Calibration of 4" Proctor Mold

\qquad
Mold I. D. \#: 4-1
Temperature of Water used for Calibration: $82^{\circ} \mathrm{F}$
Unit Weight of Water: \qquad lb. / cu. Ft.

\qquad
Mold I. D. \#: 4-1
Temperature of Water used for Calibration: Unit Weight of Water: \qquad

Unit weight of Water

Use Table on next page to

Weight of Baseplate, Empty Mold, and Glass Plate (grams)	Weight of Baseplate, Mold Filled With Water, and Glass Plate (grams)	Wei determine the Unit Weight Wai of Water at $82^{\circ} \mathrm{F}$
4574.3	5514.7	
4074.3		

Remarks: \qquad

Calibration Date:
Test Operator:
Supervisor and Date: \qquad Calibration Expiration Date:

APPENDIX A - (Continued)

Temperature	Unit Weight of Water
Temp ${ }^{\circ} \mathrm{F}$	lbs/cu. Ft.
68	62.315
69	62.308
70	62.301
71	62.293
72	62.285
73	62.277
74	62.269
75	62.261
76	62.252
77	62.243
78	62.234
79	62.225
80	62.216
81	62.206
82	62.196
83	62.186
84	62.176
85	62.166
86	62.155

\qquad X Four Inch Mold \qquad Six Inch Mold

Mold I. D. \#: 4-1
Temperature of Water used for Calibration: $82^{\circ} \mathrm{F}$ Unit Weight of Water: 62.196 lb. / cu. Ft.

Weight of Baseplate, M Empty Mold, and V Glass Plate (grams) P	Weight of Baseplate, Mold Filled With Water, and Glass Plate (grams)	Weight of Water to fill Mold (grams)
4574.3	5514.7	
$\begin{aligned} & {\left[\begin{array}{c} \text { Volume of } \\ \text { Mold } \\ \text { (cu. ft.) } \end{array}\right]=\frac{\text { Weight of Water to Fill Mold (grams) }}{\left[\begin{array}{c} \text { Unit Weight } \\ \text { of Water } \\ (\mathrm{lb} . / \mathrm{cu} . \mathrm{ft} .) \end{array}\right] \times[453.6(\mathrm{grams} / \mathrm{lb} .)]} } \\ &= \frac{(\mathrm{l})}{(62.196} \mathrm{cu} . \mathrm{Ft} \end{aligned}$		

Remarks: \qquad

Calibration Date:
Test Operator: \qquad
\qquad Calibration Expiration Date:
\qquad Four Inch Mold \qquad Six Inch Mold

Mold I. D. \#: \qquad 4-1
Temperature of Water used for Calibration:
$82^{\circ} \mathrm{F}$

Unit Weight of Water:
62.196
lb. / cu. Ft.

Weight of Baseplate, Empty Mold, and Glass Plate (grams)	Weight of Baseplate, Mold Filled With Water, and Glass Plate (grams)	Weight of Water to fill Mold (grams)	
■ 4574.3	- 5514.7	940.4	\angle
Calculat $\begin{aligned} & 5514.7 \\ = & 4574.3 \\ = & 940.4 \end{aligned}$ $=\bar{l}$	Veight of water t veight of Baseplate, veight of Baseplate, $\begin{gathered} \lfloor(\mathrm{lb} . / \mathrm{cu} . \mathrm{ft} .)\rfloor \\ 940.4) \\ 2.196) \times(453.6 \end{gathered}$	Mold filled with Water, ty Mold, and Gla $\mathrm{cu} . \mathrm{Ft}$.	and Gla Plate)
Remarks:			
Calibration Date:			
Test Operator:			
Supervisor and Date:			
Calibration Expiration Date:			

\qquad Four Inch Mold \qquad Six Inch Mold

Mold I. D. \#: \qquad 4-1
Temperature of Water used for Calibration: $82^{\circ} \mathrm{F}$ Unit Weight of Water: 62.196 lb. / cu. Ft.

\qquad Four Inch Mold \qquad Six Inch Mold

Mold I. D. \#: \qquad 4-1
Temperature of Water used for Calibration: $82^{\circ} \mathrm{F}$ Unit Weight of Water: 62.196 lb. / cu. Ft.

Weight of Baseplate, Empty Mold, and Glass Plate (grams)	Weight of Baseplate, Mold Filled With Water, and Glass Plate (grams)	Weight of Water to fill Mold (grams)
4574.3	5514.7	940.4
$\begin{aligned} & {\left[\begin{array}{c} \text { Volume of } \\ \text { Mold } \\ \text { (cu.ft.) } \end{array}\right]=\frac{\text { Weight of Water to Fill Mold (grams) }}{\left[\begin{array}{c} \text { Unit Weight } \\ \text { of Water } \\ \text { (lb. / cu. ft.) } \end{array}\right] \times[453.6(\text { grams } / \mathrm{lb} .)]}} \\ & =\frac{(940.4)}{\left(62.196 \mathrm{c}^{2}\right) \times(453.6)}=\frac{\mathrm{cu} . \mathrm{Ft} .}{} \end{aligned}$		
Remarks:	Divide: $940.4 \div$ $=.033333209$	1056
Calibration Date: \qquad Test Operator: \qquad Supervisor and Date: \qquad Calibration Expiration Date		

\qquad
X
Four Inch Mold \qquad Six Inch Mold

Mold I. D. \#: \qquad 4-1
Temperature of Water used for Calibration: $82^{\circ} \mathrm{F}$ Unit Weight of Water:
62.196 lb. / cu. Ft.

Calibration of 6" Proctor Mold

\qquad Four Inch Mold \qquad Six Inch Mold

Mold I. D. \#: \qquad
Temperature of Water used for Calibration 78 Unit Weight of Water: \qquad lb. / cu. Ft.

Weight of Baseplate, Empty Mold, and Glass Plate (grams)	Weight of Baseplate, Mold Filled With Water, and Glass Plate (grams)	Weight of Water to fill Mold (grams)
7064.5	9180.8	
$\begin{aligned} & {\left[\begin{array}{c} \text { Volume of } \\ \text { Mold } \\ \text { (cu. ft.) } \end{array}\right.} \\ & =\frac{(}{(} \end{aligned}$	$=\frac{\text { Weight of Water }}{\left[\begin{array}{c} \text { Unit Weight } \\ \text { of Water } \\ \text { (lb. / cu. ft.) } \end{array}\right] \times}$ $\frac{)}{) \times(453.6)}=$	Mold (grams) (grams / lb.)] \qquad $\mathrm{cu} . \mathrm{Ft}$.
Remarks:		
Calibration Date:		
Test Operator:		
Supervisor and Date:		
Calibration Expiration Date:		

\qquad Four Inch Mold \qquad Six Inch Mold

Mold I. D. \#: \qquad Temperature of Water used for Calibration:
 Unit Weight of Water: \qquad

APPENDIX A - (Continued)

Temperature	Unit Weight of Water
Temp ${ }^{\circ} \mathrm{F}$	lbs/cu. Ft.
68	62.315
69	62.308
70	62.301
71	62.293
72	62.285
73	62.277
74	62.269
75	62.261
76	62.252
77	62.243
78	62.234
79	62.225
80	62.216
81	62.206
82	62.196
83	62.186
84	62.176
85	62.166
86	62.155

\qquad Four Inch Mold \qquad Six Inch Mold

Mold I. D. \#: \qquad
Temperature of Water used for Calibration: $78^{\circ} \mathrm{F}$ Unit Weight of Water:
\qquad 62.234 lb. $/ \mathrm{cu} . \mathrm{Ft}$.

Weight of Baseplate, Empty Mold, and Glass Plate (grams)	Weight of Baseplate, Mold Filled With Water, and Glass Plate (grams)	Weight of Water to fill Mold (grams)
7064.5	9180.8	
$\left[\begin{array}{c} \text { Volume o } \\ \text { Mold } \\ \text { (cu. ft.) } \end{array}\right.$ $=\frac{(}{(1)}$	$]=\frac{\text { Weight of Water }}{\left[\begin{array}{c}\text { Unit Weight } \\ \text { of Water } \\ \text { (lb. / cu. ft.) }\end{array}\right] \times}$	Mold (grams) (grams / lb.)] \qquad cu. Ft.
Remarks:		
Calibration Date:		
Test Operator:		
Supervisor and Date:		
Calibration Expiration Date:		

\qquad Four Inch Mold \qquad
X Six Inch Mold
Mold I. D. \#: \qquad 11
Temperature of Water used for Calibration: $78^{\circ} \mathrm{F}$ Unit Weight of Water: \qquad 62.234 lb. / cu. Ft.

Weight of Baseplate, Empty Mold, and Glass Plate (grams)	Weight of Baseplate, Mold Filled With Water, and Glass Plate (grams)	Weight of Water to fill Mold (grams)	
7064.5	9180.8	2116.3	\leftarrow
Calcula $\begin{array}{r} 9180 . \\ -7064 . \\ =2116 \end{array}$	Neight of water to F veight of Baseplate, veight of Baseplate,	Id illed with Water, Mold, and Glas $\mathrm{cu} . \mathrm{Ft}$.	Glas te)
Remarks:			
Calibration Date:			
Test Operator:			
Supervisor and Date:			
Calibration Expiration Date:			

\qquad Four Inch Mold \qquad
X_Six Inch Mold
Mold I. D. \#: \qquad 11
Temperature of Water used for Calibration: $78^{\circ} \mathrm{F}$ Unit Weight of Water: \qquad 62.234 lb. / cu. Ft.

\qquad Four Inch Mold
X Six Inch Mold

Mold I. D. \#: \qquad 11
Temperature of Water used for Calibration: $78^{\circ} \mathrm{F}$ Unit Weight of Water: \qquad 62.234 lb. / cu. Ft.

Weight of Baseplate Empty Mold, and Glass Plate (grams)	Weight of Baseplate, Mold Filled With Water, and Glass Plate (grams)	Weight of Water to fill Mold (grams)
7064.5	9180.8	2116.3
Remarks: \qquad Divide: $\quad 2116.3 \div 28229.3424$		
Calibration Date:		
Test Operator:		
Supervisor and Date:		
Calibration Expiratio		

\qquad Four Inch Mold \qquad
X_Six Inch Mold
Mold I. D. \#: \qquad 11
Temperature of Water used for Calibration: $78^{\circ} \mathrm{F}$ Unit Weight of Water: \qquad 62.234 lb. / cu. Ft.

Weight of Baseplate, Empty Mold, and Glass Plate (grams)	Weight of Baseplate, Mold Filled With Water, and Glass Plate (grams)	Weight of Water to fill Mold (grams)
7064.5	9180.8	2116.3
$\begin{aligned} & {\left[\begin{array}{c} \text { Volume of } \\ \text { Mold } \end{array}\right]=\frac{\text { Weight of Water to Fill Mold (grams) }}{\left[\begin{array}{c} \text { Unit Weight } \\ \text { of Water } \\ \text { (lb. } / \mathrm{cu} . \mathrm{ft} \text {) }) \end{array}\right] \times[453.6(\text { grams } / \mathrm{lb} .)]}} \\ & =\frac{(2116.3)}{\left(\frac{21234}{}\right) \times(453.6)}=\frac{.0750}{28229.3424} \mathrm{cu} . \mathrm{Ft} . \end{aligned}$		
Remarks:	Round to the forth decimal place$\begin{aligned} & .074 \underline{9} 68094 \\ = & .0750 \end{aligned}$	
Calibration Date: \qquad Test Operator: \qquad Supervisor and Date: \qquad Calibration Expiration Date		

Calculation of Standard Sand and Sand Cone Apparatus

Date of Calibration: \qquad Test Operator: \qquad
I. D. No. of Mold used in calibration: 11

Volume of Mold used in calibration: \qquad
Identification of Sand: \qquad
Identification of Sand Cone Apparatus: \qquad

Trial No.	Wt. of Baseplate And Empty Mold (grams)	Wt. of Baseplate and Mold Filled with Sand (grams)	Wt. of Sand to Fill Mold (grams)
1	6631	9629	
2	6631	9627	
3	6631	9630	

Average Weight of Sand to Fill Mold = \qquad grams

Density of Sand, $\mathbf{D}_{\mathbf{S}}=\frac{\text { Average Weight of Sand to Fill Mold }}{(453.6 \text { grams } / \mathrm{lb} .) \times(\text { Volume of Mold })}$

$$
=\frac{(453.6) \times(\quad)}{\left(\quad \mathrm{lb} . \mathrm{ft} \mathrm{f}^{3} .\right.}
$$

Trial No.	Initial Wt. of Apparatus (grams)	Final Wt. of Apparatus (grams)	Wt. of Sand to Fill Funnel and Baseplate (grams)
1	6029	4508	
2	6031	4512	
3	6027	4508	

Average Weight of Sand to Fill Funnel and Baseplate $=$ \qquad grams

Volume of Funnel and Baseplate, $\mathbf{V}_{\mathbf{f b}}=\frac{\text { Average Weight of Sand to Fill Funnel and Baseplate }}{(453.6 \text { grams } / \mathrm{lb} .) \times(\text { Density ofSand })}$

$$
=\frac{(453.6) \times(}{}
$$ $\mathbf{I}=\mathbf{D}_{\mathbf{s}} \times \mathbf{V}_{\mathrm{fb}}$ \qquad

Remarks: \qquad

Supervisor and Date:
Calibration Expiration Date:

Date of Calibration: \qquad Test Operator: I. D. No. of Mold used in calibration: \qquad			
Volume of Mold used in calibration:			
Identification of Sand:			
Volume of Mold used in calibration a 6 " mold is used in the calibration of the sand. Go back to the previous form where the volume of the 6 " mold was calculated and bring that volume over to this form.			
2	6631	9627	
3	6631	9630	
Average Weight of Sand to Fill Mold $=\ldots$ grams			
$\text { Density of Sand }, \mathbf{D}_{\mathbf{S}}=\frac{\text { Average Weight of Sand to Fill Mold }}{(453.6 \text { grams } / \mathrm{lb} .) \times(\text { Volume of Mold })}$			
$=\frac{}{(453.6) \times(\quad)}=\square=\mathrm{lb} . / \mathrm{ft}^{3}$			
Trial No.	Initial Wt. of Apparatus (grams)	Final Wt. of Apparatus (grams)	Wt. of Sand to Fill Funnel and Baseplate (grams)
1	6029	4508	
2	6031	4512	
3	6027	4508	
Average Weight of Sand to Fill Funnel and Baseplate =__grams			
$\text { Volume of Funnel and Baseplate, } \mathbf{V}_{\mathbf{f b}}=\frac{\text { Average Weight of Sand to Fill Funnel and Baseplate }}{(453.6 \text { grams } / \mathrm{lb} .) \times(\text { Density ofSand })}$			
		$\text { b) } \times(\quad)$	$=\mathrm{ft}^{3}$
Remarks:__ I = $\mathbf{D}_{\mathbf{s}} \mathbf{x} \mathbf{V}_{\mathbf{f b}}$			
Supervisor and Date:			
Calibration Expiration Date:			

Date of Calibration: Test Operator: \qquad
I. D. No. of Mold used in calibration: 11

Volume of Mold used in calibration: \qquad
Identification of Sand: \qquad
Identification of Sand Cone Apparatus: \qquad

Trial No.	Initial Wt. of Apparatus (grams)	Final Wt. of Apparatus (grams)	Wt. of Sand to Fill Funnel and Baseplate (grams)
1	6029	4508	
2	6031	4512	
3	6027	4508	

Average Weight of Sand to Fill Funnel and Baseplate $=$ \qquad grams

Volume of Funnel and Baseplate, $\mathbf{V}_{\mathbf{f b}}=\frac{\text { Average Weight of Sand to Fill Funnel and Baseplate }}{(453.6 \mathrm{grams} / \mathrm{lb} .) \times(\text { Density ofSand })}$
$(453.6) \times$ $=\mathrm{ft} .^{3}$

Remarks: \qquad $\mathbf{I}=\mathbf{D}_{\mathbf{s}} \times \mathbf{V}_{\mathrm{fb}}$ \qquad

Supervisor and Date:
Calibration Expiration Date:
Date of Calibration: Test Operator: \qquad
I. D. No. of Mold used in calibration: 11

Volume of Mold used in calibration: \qquad
Identification of Sand: \qquad
Identification of Sand Cone Apparatus: \qquad

Trial No.	Wt. of Baseplate And Empty Mold (grams)	Wt. of Baseplate and Mold Filled with Sand (grams)	Wt. of Sand to Fill Mold (grams)
1	6631	9629	2998
(2)	6631	- 9627	$2996>$
3	6631	9630	
Average Weight of Sand to Fill Mold = grams			
Three trials are run. For each trial, the weight of sand to fill the mold must be determined. $\begin{array}{cc} \text { Trial 1 }= \\ 9629 \end{array} \quad \begin{gathered} \text { Trial 2 }= \\ 9627 \\ -\frac{6631}{2998} \end{gathered} \quad=\frac{6631}{2996}$			

Trial No.	Initial Wt. of Apparatus (grams)	Final Wt. of Apparatus (grams)	Wt. of Sand to Fill Funnel and Baseplate (grams)
1	6029	4508	
2	6031	4512	
3	6027	4508	

Average Weight of Sand to Fill Funnel and Baseplate $=$ \qquad grams

Volume of Funnel and Baseplate, $\mathbf{V}_{\mathbf{f b}}=\frac{\text { Average Weight of Sand to Fill Funnel and Baseplate }}{(453.6 \mathrm{grams} / \mathrm{lb} .) \times(\text { Density ofSand })}$
(453.6) \times \square $=\mathrm{ft} .{ }^{3}$

Remarks: \qquad $\mathbf{I}=\mathbf{D}_{\mathbf{s}} \times \mathbf{V}_{\mathrm{fb}}$ \qquad

Supervisor and Date:
Calibration Expiration Date:

Date of Calibration: \qquad Test Operator: \qquad
I. D. No. of Mold used in calibration: 11

Volume of Mold used in calibration: \qquad
Identification of Sand: \qquad
Identification of Sand Cone Apparatus: \qquad

Trial No.	Initial Wt. of Apparatus (grams)	Final Wt. of Apparatus (grams)	Wt. of Sand to Fill Funnel and Baseplate (grams)
1	6029	4508	
2	6031	4512	
3	6027	4508	

Average Weight of Sand to Fill Funnel and Baseplate $=$ \qquad grams

Volume of Funnel and Baseplate, $\mathbf{V}_{\mathbf{f b}}=\frac{\text { Average Weight of Sand to Fill Funnel and Baseplate }}{(453.6 \mathrm{grams} / \mathrm{lb} .) \times(\text { Density ofSand })}$
(453.6) \times \square $=\mathrm{ft} .{ }^{3}$

Remarks: \qquad $\mathbf{I}=\mathbf{D}_{\mathbf{s}} \times \mathbf{V}_{\mathrm{fb}}$ \qquad

Supervisor and Date:
Calibration Expiration Date:

Date of Calibration: \qquad Test Operator: \qquad
I. D. No. of Mold used in calibration:

11

Volume of Mold used in calibration: \qquad
Identification of Sand: \qquad
Identification of Sand Cone Apparatus: \qquad

Trial No.	Wt. of Baseplate And Empty Mold (grams)	Wt. of Baseplate and Mold Filled with Sand (grams)	Wt. of Sand to Fill Mold (grams)
1	6631	9629	2998
2	6631	9627	2996
3	6631	9630	2999

Date of Calibration: \qquad Test Operator: \qquad
I. D. No. of Mold used in calibration:

11

Volume of Mold used in calibration: \qquad
Identification of Sand: \qquad
Identification of Sand Cone Apparatus: \qquad

Trial No.	Wt. of Baseplate And Empty Mold (grams)	Wt. of Baseplate and Mold Filled with Sand (grams)	Wt. of Sand to Fill Mold (grams)
1	6631	9629	2998
2	6631	9627	2996
3	6631	9630	2999

Average Weight of Sand to Fill Mold $=\ldots 2998$ grams

Density of Sand, $\mathbf{D}_{\mathbf{S}}=\frac{\text { Average Weight of Sand to Fill Mold }}{(453.6 \text { grams } / \mathrm{lb} .) \times(\text { Volume of Mold })}$

Average Weight of Sand to Fill Funnel and Baseplate $=$ \qquad grams

Volume of Funnel and Baseplate, $\mathbf{V}_{\mathbf{f b}}=\frac{\text { Average Weight of Sand to Fill Funnel and Baseplate }}{(453.6 \text { grams } / \mathrm{lb} .) \times(\text { Density ofSand })}$

Remarks: \qquad $\mathbf{I}=\mathbf{D}_{\mathbf{s}} \times \mathbf{V}_{\mathrm{fb}}$ \qquad

Supervisor and Date:
Calibration Expiration Date:

Date of Calibration: \qquad Test Operator: \qquad
I. D. No. of Mold used in calibration:

11

Volume of Mold used in calibration: \qquad
Identification of Sand: \qquad
Identification of Sand Cone Apparatus: \qquad

Trial No.	Wt. of Baseplate And Empty Mold (grams)	Wt. of Baseplate and Mold Filled with Sand (grams)	Wt. of Sand to Fill Mold (grams)
1	6631	9629	2998
2	6631	9627	2996
3	6631	9630	2999

Average Weight of Sand to Fill Mold $=\ldots 2998$ grams

Density of Sand, $\mathbf{D}_{\mathbf{s}}=\frac{\text { Average Weight of Sand to Fill Mold }}{(453.6 \text { grams } / \mathrm{lb} .) \times(\text { Volume of Mold })}$
88.12463257

Average Weight of Sand to Fill Funnel and Baseplate $=$ \qquad grams

Volume of Funnel and Baseplate, $\mathbf{V}_{\mathbf{f b}}=\frac{\text { Average Weight of Sand to Fill Funnel and Baseplate }}{(453.6 \text { grams } / \mathrm{lb} .) \times(\text { Density ofSand })}$
$(453.6) \times$
 $=\mathrm{ft} .^{3}$

Remarks: \qquad $\mathbf{I}=\mathbf{D}_{\mathbf{s}} \mathbf{x} \mathbf{V}_{\mathrm{fb}}$ \qquad

Supervisor and Date:
Calibration Expiration Date:

Date of Calibration: \qquad Test Operator: \qquad
I. D. No. of Mold used in calibration:

11

Volume of Mold used in calibration: \qquad
Identification of Sand: \qquad
Identification of Sand Cone Apparatus: \qquad

Trial No.	Wt. of Baseplate And Empty Mold (grams)	Wt. of Baseplate and Mold Filled with Sand (grams)	Wt. of Sand to Fill Mold (grams)
1	6631	9629	2998
2	6631	9627	2996
3	6631	9630	2999

Average Weight of Sand to Fill Mold $=\ldots 2998$ grams

Density of Sand, $\mathbf{D}_{\mathbf{s}}=\frac{\text { Average Weight of Sand to Fill Mold }}{(453.6 \text { grams } / \mathrm{lb} .) \times(\text { Volume of Mold })}$
88.12463257

Trial No.	A	Round to one decimal place $=88.124033257=88.1$	ld to Fill Funnel כplate (grams)
1	-		
2			
3			

Average Weight of Sand to Fill Funnel and Baseplate $=$ \qquad grams

Volume of Funnel and Baseplate, $\mathbf{V}_{\mathbf{f b}}=\frac{\text { Average Weight of Sand to Fill Funnel and Baseplate }}{(453.6 \text { grams } / \mathrm{lb} .) \times(\text { Density ofSand })}$
$(453.6) \times$
 $=\mathrm{ft} .^{3}$

Remarks: \qquad $\mathbf{I}=\mathbf{D}_{\mathbf{s}} \mathbf{x} \mathbf{V}_{\mathrm{fb}}$ \qquad

Supervisor and Date:
Calibration Expiration Date:

Date of Calibration: \qquad Test Operator: \qquad
I. D. No. of Mold used in calibration: \qquad 11

Volume of Mold used in calibration: \qquad
Identification of Sand: \qquad
Identification of Sand Cone Apparatus: \qquad

Trial No.	Wt. of Baseplate And Empty Mold (grams)	Wt. of Baseplate and Mold Filled with Sand (grams)	Wt. of Sand to Fill Mold (grams)
1	6631	9629	2998
2	6631	9627	2996
3	6631	9630	2999

Average Weight of Sand to Fill Mold $=\ldots 2998$ grams

Density of Sand, $\mathbf{D}_{\mathbf{s}}=\frac{\text { Average Weight of Sand to Fill Mold }}{(453.6 \text { grams } / \mathrm{lb} .) \times(\text { Volume of Mold })}$
88.12463257

$$
=\frac{2998}{(453.6) \times(.0750 \quad 34.02}=\frac{88.1}{}=\mathrm{lb} . / \mathrm{ft} .^{3}
$$

Date of Calibration: \qquad Test Operator: \qquad
I. D. No. of Mold used in calibration: \qquad 11

Volume of Mold used in calibration: \qquad
Identification of Sand: \qquad
Identification of Sand Cone Apparatus: \qquad

Trial No.	Wt. of Baseplate And Empty Mold (grams)	Wt. of Baseplate and Mold Filled with Sand (grams)	Wt. of Sand to Fill Mold (grams)
1	6631	9629	2998
2	6631	9627	2996
3	6631	9630	2999

Average Weight of Sand to Fill Mold $=\ldots 2998$ grams

Density of Sand, $\mathbf{D}_{\mathbf{s}}=\frac{\text { Average Weight of Sand to Fill Mold }}{(453.6 \text { grams } / \mathrm{lb} .) \times(\text { Volume of Mold })}$
88.12463257

$$
=\frac{2998}{(453.6) \times(.0750 \quad 34.02}=\frac{88.1}{}=\mathrm{lb} . / \mathrm{ft} .^{3}
$$

Date of Calibration: \qquad Test Operator: \qquad
I. D. No. of Mold used in calibration: \qquad 11

Volume of Mold used in calibration: \qquad
Identification of Sand: \qquad
Identification of Sand Cone Apparatus: \qquad

Trial No.	Wt. of Baseplate And Empty Mold (grams)	Wt. of Baseplate and Mold Filled with Sand (grams)	Wt. of Sand to Fill Mold (grams)
1	6631	9629	2998
2	6631	9627	2996
3	6631	9630	2999

Average Weight of Sand to Fill Mold $=\ldots 2998$ grams

Density of Sand, $\mathbf{D}_{\mathbf{S}}=\frac{\text { Average Weight of Sand to Fill Mold }}{(453.6 \text { grams } / \mathrm{lb} .) \times(\text { Volume of Mold })}$
88.12463257

$$
=\frac{2998}{(453.6) \times(.0750 \quad 34.02}=\frac{88.1}{}=\mathrm{lb} . / \mathrm{ft} .^{3}
$$

Date of Calibration: \qquad Test Operator: \qquad
I. D. No. of Mold used in calibration: 11

Volume of Mold used in calibration: \qquad
Identification of Sand: \qquad
Identification of Sand Cone Apparatus: \qquad

Trial No.	Wt. of Baseplate And Empty Mold (grams)	Wt. of Baseplate and Mold Filled with Sand (grams)	Wt. of Sand to Fill Mold (grams)
1	6631	9629	2998
2	6631	9627	2996
3	6631	9630	2999

Average Weight of Sand to Fill Mold $=\ldots 2998$ grams

Density of Sand, $\mathbf{D}_{\mathbf{s}}=\frac{\text { Average Weight of Sand to Fill Mold }}{(453.6 \text { grams } / \mathrm{lb} .) \times(\text { Volume of Mold })}$
88.12463257

$$
=\frac{2998}{(453.6) \times(.0750 \quad 34.02}=\frac{88.1}{}=\mathrm{lb} . / \mathrm{ft} .^{3}
$$

Trial No. Initial Wt. of Apparatus (grams) Final Wt. of Apparatus (grams) Wt. of Sand to Fill Funnel and Baseplate (grams) 1 6029 4508 1521 2 6031 4512 1519 3 6027 4508 1519	
	Average Weight of Sand to Fill Funnel and Baseplate

Volume of Funnel and Baseplate, $\mathbf{V}_{\mathbf{f}}$ Average Weight of Sand to Fill Funnel and Baseplate (453.6 grams / lb.) $\times($ Density ofSand $)$
Average Weight of Sand to Fill Funnel and Baseplate

$$
+1519
$$

$$
=\frac{1519}{4559} \div 3=1519.666667
$$

Supervisor and Date:
Calibration Expiration Date:

Date of Calibration: \qquad Test Operator: \qquad
I. D. No. of Mold used in calibration: 11

Volume of Mold used in calibration: \qquad
Identification of Sand: \qquad
Identification of Sand Cone Apparatus: \qquad

Trial No.	Wt. of Baseplate And Empty Mold (grams)	Wt. of Baseplate and Mold Filled with Sand (grams)	Wt. of Sand to Fill Mold (grams)
1	6631	9629	2998
2	6631	9627	2996
3	6631	9630	2999

Average Weight of Sand to Fill Mold $=\ldots 2998$ grams

Density of Sand, $\mathbf{D}_{\mathbf{s}}=\frac{\text { Average Weight of Sand to Fill Mold }}{(453.6 \text { grams } / \mathrm{lb} .) \times(\text { Volume of Mold })}$
88.12463257

$$
=\frac{2998}{(453.6) \times(.075034 .02}=\frac{88.1}{}=\mathrm{lb} . / \mathrm{ft} .^{3}
$$

Trial No.	Initial Wt. of Apparatus (grams)	Final Wt. of Apparatus (grams)	Wt. of Sand to Fill Funnel and Baseplate (grams)
1	6029	4508	1521
2	6031	4512	1519
3	6027	4508	1519

Average Weight of Sand to Fill Funnel and Baseplate= \qquad

Volume of Funnel and Baseplate, $\mathbf{V}_{\mathbf{f b}}=\frac{\text { Average Weight of S21d to FillFunnel and Baseplate }}{(453.6 \text { grams } / \mathrm{lb} .) \times(\text { Density ofSand })}$ $=\mathrm{ft} .{ }^{3}$

Date of Calibration: \qquad Test Operator: \qquad
I. D. No. of Mold used in calibration:

11

Volume of Mold used in calibration: \qquad
Identification of Sand: \qquad
Identification of Sand Cone Apparatus: \qquad

Trial No.	Wt. of Baseplate And Empty Mold (grams)	Wt. of Baseplate and Mold Filled with Sand (grams)	Wt. of Sand to Fill Mold (grams)
1	6631	9629	2998
2	6631	9627	2996
3	6631	9630	2999

Average Weight of Sand to Fill Mold $=\ldots 2998$ grams

Density of Sand, $\mathbf{D}_{\mathbf{S}}=\frac{\text { Average Weight of Sand to Fill Mold }}{(453.6 \text { grams } / \mathrm{lb} .) \times(\text { Volume of Mold })}$
88.12463257

$$
\left.=\frac{2998}{(453.6) \times(.0750} 34.02\right)=\frac{88.1}{\mathrm{lb}^{2} . \mathrm{ft.}{ }^{3} .}
$$

Trial No.	Initial Wt. of Apparatus (grams)	Final Wt. of Apparatus (grams)	Wt. of Sand to Fill Funnel and Baseplate (grams)
1	6029	4508	1521
2	6031	4512	1519
3	6027	4508	1519

Average Weight of Sand to Fill Funnel and Basemlate $=$ 1520 grams

Volume of Funnel and Baseplate, $\mathbf{V}_{\mathbf{f b}}=\frac{\text { Average Weight of Sand to FillFunnel and Baseplate }}{(453.6 g \mathrm{grams} / \mathrm{lb} .) \times(\text { Density ofSand })}$
$=\frac{1520}{(453.6) \times(88.1)}=\frac{\mathrm{ft} .^{3}}{}$

Remarks: \qquad $\mathbf{I}=\mathbf{D}_{\mathbf{s}} \mathbf{x} \mathbf{V}_{\mathrm{fb}}$ \qquad

Supervisor and Date:
Calibration Expiration Date:

Date of Calibration: \qquad Test Operator: \qquad
I. D. No. of Mold used in calibration:

11

Volume of Mold used in calibration: \qquad
Identification of Sand: \qquad
Identification of Sand Cone Apparatus: \qquad

Trial No.	Wt. of Baseplate And Empty Mold (grams)	Wt. of Baseplate and Mold Filled with Sand (grams)	Wt. of Sand to Fill Mold (grams)
1	6631	9629	2998
2	6631	9627	2996
3	6631	9630	2999

Average Weight of Sand to Fill Mold $=\quad 2998$ grams
Density of Sand, $\mathbf{D}_{\mathbf{S}}=\frac{\text { Average Weight of Sand to Fill Mold }}{(453.6 \text { grams } / \mathrm{lb} .) \times(\text { Volume of Mold })}$
88.12463257

$$
=\frac{2998}{(453.6) \times(.0750 \quad 34.02}=\frac{88.1}{}=\mathrm{lb} . / \mathrm{ft} .^{3}
$$

Trial No.	Initial Wt. of Apparatus (grams)	Final Wt. of Apparatus (grams)	Wt. of Sand to Fill Funnel and Baseplate (grams)
1	6029	4508	1521
2	6031	4512	1519
3	6027	4508	1519

Average Weight of Sand to Fill Funnel and Baseplate $=$ 1520 grams

Volume of Funnel and Baseplate, $\mathbf{V}_{\mathbf{f b}}=\frac{\text { Average Weight of Sand to Fill Funnel and Baseplate }}{(453.6 \text { grams } / \mathrm{lb} .) \times(\text { Density ofSand })}$

Date of Calibration: \qquad Test Operator: \qquad
I. D. No. of Mold used in calibration:

11

Volume of Mold used in calibration: \qquad
Identification of Sand: \qquad
Identification of Sand Cone Apparatus: \qquad

Trial No.	Wt. of Baseplate And Empty Mold (grams)	Wt. of Baseplate and Mold Filled with Sand (grams)	Wt. of Sand to Fill Mold (grams)
1	6631	9629	2998
2	6631	9627	2996
3	6631	9630	2999

Average Weight of Sand to Fill Mold $=\ldots 2998$ grams

Density of Sand, $\mathbf{D}_{\mathbf{S}}=\frac{\text { Average Weight of Sand to Fill Mold }}{(453.6 \mathrm{grams} / \mathrm{lb} .) \times(\text { Volume of Mold })}$
88.12463257

$$
=\frac{2998}{(453.6) \times(.0750 \quad 34.02}=\frac{88.1}{}=\mathrm{lb} . / \mathrm{ft} .^{3}
$$

Trial No.	Initial Wt. of Apparatus (grams)	Final Wt. of Apparatus (grams)	Wt. of Sand to Fill Funnel and Baseplate (grams)
1	6029	4508	1521
2	6031	4512	1519
3	6027	4508	1519

Average Weight of Sand to Fill Funnel and Baseplate $=$ 1520 grams

Volume of Funnel and Baseplate, $\mathbf{V}_{\mathbf{f b}}=\frac{\text { Average Weight of Sand to Fill Funnel and Baseplate }}{(453.6 \mathrm{grams} / \mathrm{lb} .) \times(\text { Density ofSand })}$

Date of Calibration: \qquad Test Operator: \qquad
I. D. No. of Mold used in calibration: 11

Volume of Mold used in calibration: \qquad
Identification of Sand: \qquad
Identification of Sand Cone Apparatus: \qquad

Trial No.	Wt. of Baseplate And Empty Mold (grams)	Wt. of Baseplate and Mold Filled with Sand (grams)	Wt. of Sand to Fill Mold (grams)
1	6631	9629	2998
2	6631	9627	2996
3	6631	9630	2999

Average Weight of Sand to Fill Mold $=\ldots 2998$ grams

Density of Sand, $\mathbf{D}_{\mathbf{s}}=\frac{\text { Average Weight of Sand to Fill Mold }}{(453.6 \text { grams } / \mathrm{lb} .) \times(\text { Volume of Mold })}$
88.12463257

$$
=\frac{2998}{(453.6) \times(.0750 \quad 34.02}=\frac{88.1}{}=\mathrm{lb} . / \mathrm{ft} .^{3}
$$

Trial No.	Initial Wt. of Apparatus (grams)	Final Wt. of Apparatus (grams)	Wt. of Sand to Fill Funnel and Baseplate (grams)
1	6029	4508	1521
2	6031	4512	1519
3	6027	4508	1519

Average Weight of Sand to Fill Funnel and Baseplate $=$ 1520 grams

Volume of Funnel and Baseplate, $\mathbf{V}_{\mathbf{f b}}=\frac{\text { Average Weight of Sand to Fill Funnel and Baseplate }}{(453.6 \mathrm{grams} / \mathrm{lb} .) \times(\text { Density ofSand })}$
.038035982

$$
=\frac{1520}{(453.6) \times\left(\begin{array}{cc}
88.1 & 39962.16
\end{array}\right) ~}
$$

| Remarks:__ Divide: $1520 \div 39962.16=.038035982$ | |
| :--- | :--- | :--- |
| Supervisor and Dat
 Calibration Expirati | Round to forth decimal place |

Date of Calibration: \qquad Test Operator: \qquad
I. D. No. of Mold used in calibration: 11

Volume of Mold used in calibration: \qquad .0750

Identification of Sand:
Identification of Sand Cone Apparatus:

Trial No.	Wt. of Baseplate And Empty Mold (grams)	Wt. of Baseplate and Mold Filled with Sand (grams)	Wt. of Sand to Fill Mold (grams)
1	6631	9629	2998
2	6631	9627	2996
3	6631	9630	2999

Average Weight of Sand to Fill Mold $=\ldots 2998$ grams

Density of Sand, $\mathbf{D}_{\mathbf{S}}=\frac{\text { Average Weight of Sand to Fill Mold }}{(453.6 \text { grams } / \mathrm{lb} .) \times(\text { Volume of Mold })}$
88.12463257

$$
=\frac{2998}{(453.6) \times\left(.0750{ }_{34}\right) 02}=\frac{88.1}{{ }^{.07}}=\mathrm{lb} . / \mathrm{ft} .^{3}
$$

Trial No.	Initial Wt. of Apparatus (grams)	Final Wt. of Apparatus (grams)	Wt. of Sand to Fill Funnel and Baseplate (grams)
1	6029	4508	1521
2	6031	4512	1519
3	6027	4508	1519

Average Weight of Sand to Fill Funnel and Baseplate $=$

Volume of Funnel and Baseplate, $\mathbf{V}_{\mathbf{f b}}=\frac{\text { Average Weight of Sand to Fill Funnel and Baseplate }}{(453.6 \mathrm{grams} / \mathrm{lb} .) \times(\text { Density of Sand })}$

ARIZONA DEPARTMENT OF TRANSPORTATION SAND CONE DENSITY (ARIZ 230)

PROCTOR DENSITY

PROCTOR NUMBER					
PROCTOR METHOD (A,C, D, OR 1)	2	6	5	1	
O. SPECIFIC GRAVITY OF RETAINED \#4		0	8	7	$\%$
P. ABSORPTION OF RETAINED \#4		1	1	6	$\%$
Q. OPTIMUM MOISTURE	1	2	2.	7	PCF
R. MAXIMUM DRY DENSITY					

CORRECTION FOR RETAINED \#4 (METHOD A OR ONE-POINT ONLY)

S. CORRECTED OPTIMUM MOISTURE			.	$\%$
T. CORRECTED MAXIMUM DRY DENSITY				PCF

IF RET. ON \#4 IS MORE THAN 50\% (60\% IF AB), GO NO FURTHER.
FOR METHOD A OR ONE POINT ONLY
$E=\frac{[D(100-a)]+a}{100}$
ONE POINT PROCTOR (ARIZ 232)

b. WEIGHT OF MOLD \& SOIL	1	3	8	9	LB.
c. WEIGHT OF MOLD		9	4	7	LB.
d. WEIGHT OF COMPACTED SOIL (b-c)					LB.
e. VOLUME OF MOLD					CF
f. WET DENSITY (d/e)					PCF
g. MOISTURE CONTENT		9	9	$\%$	
FAMILY OF CURVES IDENTIFICATION		$\&$			
Q. OPTIMUM MOISTURE					$\%$
R. MAXIMUM DRY DENSITY				PCF	

TEST OPERATORAND DATE

RESIDENT ENGINEER, PROJECT SUPERVISOR, OR LABMAN AND DATE

FOR METHOD A OR ONE POINT ONLY

$$
\begin{aligned}
& \mathrm{S}=\frac{[Q(100-a)]+a}{100} \\
& \mathrm{~T}=\frac{[R(100-a)]+[(56.2)(a)(0)]}{100}
\end{aligned}
$$

Sand Cone Density Calculation

ARIZONA DEPARTMENT OF TRANSPORTATION SAND CONE DENSITY (ARIZ 230)

A. TOTAL WET WEIGHT OF MATERIAL FROM THE HOLE					7	B.	
B. WET WEIGHT OF MATERIAL RETAINED ON THE \#4 SIEVE					3		-
C. WET WEIGHT OF MATERIALPASSIING THE \#4 SIEVE (A-B)							B.
D. MOISTURE OF THE MATERIAL PASSING THE \#4 SIEVE		1	0		3		\%
E. MOIST. CORRECTED FOR MATERIAL RETAINED ON THE \#4 SIEVE							\%
F. WEIGHT OF SAND \& APPARATUS BEFORE FILLING HOLE	1	5. 6			9		
G. WEIGHT OF SAND \& APPARATUS AFTER FILLING HOLE		6. 4			8		
H. WEIGHT OF SAND TO FILL HOLE AND CONE (F-G)		*					
I. WEIGHTOF SAND TO FILL CONE ANDBASE PLATE		3.3			5		
J. WEIGHT OF SAND TO FILLHOLE (H-1)		-					B.
K. DENSITY OF SAND		88.1				CF	
L. Volume of hole ($\frac{J}{K}$)							${ }_{\text {cF }}$
M. WETDENSITY $=\left(\frac{A}{L}\right)$							
$\text { N. DRYDENSITY }=\left(\frac{M}{100+E}\right) \times 100$							
COMPACTION $=\left(\frac{N}{R}\right) \times 100$ OR $\left(\frac{N}{T}\right) \times 100$							\%
COMPACTION SPECIFICATION		1	0		0		\%

PROCTOR DENSITY

PROCTOR NUMBER					
PROCTOR METHOD (A, C, D, OR 1) (A)					
O. SPECIFIC GRAVITY OF RETAINED \#4	2	6	5		
P. ABSORPTION OF RETAINED \#4		0	8	7	\%
Q. OPTIMUM MOISTURE		1	1	6	\%
R. MAXIMUM DRY DENSITY	1	2	2	7	PCF

CORRECTION FOR RETAINED \#4 (METHOD A OR ONE-POINT ONLY)

| S. CORRECTED OPTIMUM MOISTURE | | | | $\%$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| T. CORRECTED MAXIMUM DRY DENSITY | | | | PCF |

a. RETAINED ON \#4 $=\left(\frac{B}{A}\right) \times 100$			

IF RET. ON \#4 IS MORE THAN 50% (60% IF AB), GO NO FURTHER. FOR METHOD A OR ONE POINT ONLY

$$
E=\frac{[D(100-a)]+a}{10 n}
$$

ONE POINT PROCTOR (ARIZ 232)

b. WEIGHT OF MOLD \& SOIL	1	3	8	9	LB.
c. WEIGHT OF MOLD		9	4	7	LB.
d. WEIGHT OF COMPACTED SOIL (b-c)					LB.
e. VOLUME OF MOLD					CF
f. WET DENSITY (d/e)					PCF
g. MOISTURE CONTENT		9.9	$\%$		
FAMILY OF CURVES IDENTIFICATION		$\&$			
Q. OPTIMUM MOISTURE					$\%$
R. MAXIMUM DRY DENSITY				PCF	

This is the one-point proctor section of the form. A Method A one-point proctor was performed.

$$
\begin{aligned}
& \mathrm{S}=\frac{[Q(100-a)]+a}{100} \\
& \mathrm{~T}=\frac{[R(100-a)]+[(56.2)(a)(0)]}{100}
\end{aligned}
$$

ARIZONA DEPARTMENT OF TRANSPORTATION SAND CONE DENSITY (ARIZ 230)

A. TOTAL WET WEIGHT OF MATERIAL FROM THE HOLE					7		
B. WET WEIGHT OF MATERIAL RETAINED ON THE \#4 SIEVE					3		
C. WET WEIGHT OF MATERIALPASSING THE \#4 SIEVE (A-B)							
D. MOISTURE OF THE MATERIAL PASSING THE \#4 SIEVE		1	0		3		
E. MOIST. CORRECTED FOR MATERIAL RETAINED ON THE \#4							
F. WEIGHT OF SAND \& APPARATUS BEFORE FILLING HOLE	1				9		
G. WEIGHT OF SAND \& APPARATUS AFTER FILLING HOLE			4		8		
H. WEIGHT OF SAND TO FILL HOLE AND CONE (F-G)			.				
I. WEIGHT OF SAND TO FILL CONE ANDBASE PLATE			. 3		5		
J. WEIGHT OF SAND TO FILLHOLE (H-I)			.				
K. DENSITY OF SAND		8	8		1		
L. VOLUME OF HOLE $\left(\frac{J}{K}\right)$							
M. WETDENSITY $=\left(\frac{A}{L}\right)$							
$\text { N. DRY DENSITY }=\left(\frac{M}{100+E}\right) \times 100$							
COMPACTION $=\left(\frac{N}{R}\right) \times 100$ OR $\left(\frac{N}{T}\right) \times 100$							
COMPACTION SPECIFICATION		1	0		0		

PROCTOR DENSITY

PROCTOR NUMBER					
PROCTOR METHOD (A, C, D, OR 1)				A	
O. SPECIFIC GRAVITY OF RETAINED \#4	2	6	5	1	
P. ABSORPTION OF RETAINED \#4		0	8	7	\%
Q. OPTIMUM MOISTURE		1	1	6	\%
R. MAXIMUM DRY DENSITY	1	2	2	7	PCF
CORRECTION FOR RETAINED \#4 (METHOD A OR ONE-POINT ONLY)					
S. CORRECTED OPTIMUM MOISTURE					\%
T. CORRECTED MAXIMUM DRY DENSITY					PCF

a. RETAINED ON \#4 $=\left(\frac{B}{A}\right) \times 100$			$\%$

IF RET. ON \#4 IS MORE THAN 50% (60% IF AB), GO NO FURTHER. FOR METHOD A OR ONE POINT ONLY
$E=\frac{[D(100-a)]+a}{100}$

For e. Volume of Mold go back to the form where the Volume of the 4" Mold was calculated and bring that Volume over to this form.

ARIZONA DEPARTMENT OF TRANSPORTATION SAND CONE DENSITY (ARIZ 230)

A. TOTAL WET WEIGHT OF MATERIAL FROM THE HOLE					7		
B. WET WEIGHT OF MATERIAL RETAINED ON THE \#4 SIEVE					3		
C. WET WEIGHT OF MATERIALPASSING THE \#4 SIEVE (A-B)							
D. MOISTURE OF THE MATERIAL PASSING THE \#4 SIEVE		1	0		3		
E. MOIST. CORRECTED FOR MATERIAL RETAINED ON THE \#4							
F. WEIGHT OF SAND \& APPARATUS BEFORE FILLING HOLE	1				9		
G. WEIGHT OF SAND \& APPARATUS AFTER FILLING HOLE			4		8		
H. WEIGHT OF SAND TO FILL HOLE AND CONE (F-G)			.				
I. WEIGHT OF SAND TO FILL CONE ANDBASE PLATE			. 3		5		
J. WEIGHT OF SAND TO FILLHOLE (H-I)			.				
K. DENSITY OF SAND		8	8		1		
L. VOLUME OF HOLE $\left(\frac{J}{K}\right)$							
M. WETDENSITY $=\left(\frac{A}{L}\right)$							
$\text { N. DRY DENSITY }=\left(\frac{M}{100+E}\right) \times 100$							
COMPACTION $=\left(\frac{N}{R}\right) \times 100$ OR $\left(\frac{N}{T}\right) \times 100$							
COMPACTION SPECIFICATION		1	0		0		

PROCTOR DENSITY

PROCTOR NUMBER					
PROCTOR METHOD (A, C, D, OR 1)				A	
O. SPECIFIC GRAVITY OF RETAINED \#4	2	6	5	1	
P. ABSORPTION OF RETAINED \#4		0	8	7	\%
Q. OPTIMUM MOISTURE		1	1	6	\%
R. MAXIMUM DRY DENSITY	1	2	2	7	PCF
CORRECTION FOR RETAINED \#4 (METHOD A OR ONE-POINT ONLY)					
S. CORRECTED OPTIMUM MOISTURE					\%
T. CORRECTED MAXIMUM DRY DENSITY					PCF

a. RETAINED ON \#4 $=\left(\frac{B}{A}\right) \times 100$			$\%$

IF RET. ON \#4 IS MORE THAN 50% (60% IF AB), GO NO FURTHER. FOR METHOD A OR ONE POINT ONLY
$E=\frac{[D(100-a)]+a}{100}$
ONE POINT PROCTOR (ARIZ 232)

b. WEIGHT OF MOLD \& SOIL	1	3	8	9	LB.
c. WEIGHT OF MOLD		9	4	7	LB.
d. WEIGHT OF COMPACTED SOIL (b-c)					LB.
e. VOLUME OF MOLD	0	3	3	3	(d)
f. WET DENSITY (d/e)					PCF
g. MOISTURE CONTENT			9	9	$\%$
FAMILY OF CURVES IDENTIFICATION			$\&$		
Q. OPTIMUM MOISTURE					$\%$
R. MAXIMUM DRY DENSITY				PCF	

For e. Volume of Mold go back to the form where the Volume of the 4" Mold was calculated and bring that Volume over to this form.

ARIZONA DEPARTMENT OF TRANSPORTATION SAND CONE DENSITY (ARIZ 230)

A. TOTAL WET WEIGHT OF MATERIAL FROM THEHOLE		9.0			
B. WET WEIGHT OF MATERIAL LETAINED ONTHE \#4 SIIVVE		3.6	6	3	
C. WET WEIGHT OF MATERIIL PASSIIG THE \#4 SIIVE (A-B)					
D. MOISTUREOF THE MATERIAL PASSINGTHE \#4 SIEVE					
E. MOIIT. CORRECTED FOR MATERIAL RETAINED ONTHE \#4					
F. WEIGHT OF SAND \& APPARATUS BEFORE FILIING HOLE			6	9	
G. WEIGHT OF SAND \& APPARATUS AFTER FILING HOLE		6.4	4	8	
H. WEIGHT OF SAND TO FILL HOLE AND CONE (F.G)		.			
1. WEIGHTOF SAND TO FILL CONE AND BASE PLATE		3.3		5	
J. WEIGHT OF SAND To FLLHOLE ((H-1)					
K. DENSITY OF SAND		88			
L. VoLUMEOF HOLE $\left(\frac{J}{K}\right)$					
M. WETDENSITY $=\left(\frac{A}{L}\right)$					
N. DRY DENSTIT $=\left(\frac{\mathrm{M}}{\text { (100 }+E}\right) \times 100$					
COMPACTION $=\left(\frac{N}{R}\right) \times 100$ OR $\left(\frac{N}{T}\right) \times 100$					
COMPACTION SPECIFICATION					

PROCTOR DENSITY

PROCTOR NUMBER					
PROCTOR METHOD (A,C, D, OR 1)	2	6	5	1	
O. SPECIFIC GRAVITY OF RETAINED \#4		0	8	7	$\%$
P. ABSORPTION OF RETAINED \#4		1	1	6	$\%$
Q. OPTIMUM MOISTURE	1	2	2.	7	PCF
R. MAXIMUM DRY DENSITY					

CORRECTION FOR RETAINED \#4 (METHOD A OR ONE-POINT ONLY)

| S. CORRECTED OPTIMUM MOISTURE | | | \& | $\%$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| T. CORRECTED MAXIMUM DRY DENSITY | | | | PCF |

a. RETAINED ON \#4 $=\left(\frac{B}{A}\right) \times 100$			

IF RET. ON \#4 IS MORE THAN 50% (60% IF AB), GONO FURTHER.
FOR METHOD A OR ONE POINT ONLY
$E=\frac{[D(100-a)]+a}{100}$
ONE POINT PROCTOR (ARIZ 232)

ARIZONA DEPARTMENT OF TRANSPORTATION SAND CONE DENSITY (ARIZ 230)

A. TOTAL WET WEIGHT OF MATERIAL FROM THE HOLE			, 0			L̇B.					
B. WET WEIGHT OF MATERIAL RETAINED ON THE \#4 SIEVE			. 6	3		LB.	a. RETAINED ON\#4 $=\left(\frac{B}{A}\right) \times 100$				\%
C. WET WEIGHT OF MATERIAL PASSING THE \#4 SIEVE (A-B)		-			LB.		IF RET. ON \#4 IS MORE THAN 50% (60% IF AB), GONO FURTHER. FOR METHOD A OR ONE POINT ONLY				
D. MOISTURE OF THE MATERIAL PASSING THE \#4 SIEVE		1	0	. 3		\%					
E. MOIST. CORRECTED FOR MATERIAL RETAINED ON THE \#4						\%	$\mathrm{E}=\frac{[D \quad(100-a)]}{100}$				
F. WEIGHT OF SAND \& APPARATUS BEFORE FILLING HOLE	1		5. 6	6	9	LB.	ONE POINT PROCTOR				
G. WEIGHT OF SAND \& APPARATUS AFTER FILLING HOLE			. 4		8	LB.	b. WEIGHTOF MOLD \& SOIL	1	3.		LB.
H. WEIGHT OF SAND TO FILL HOLE AND CONE (F-G)			.			LB.	c. WEIGHT OF MOLD			7	LB.
I. WEIGHTOF SAND TO FILL CONE ANDBASE PLATE			. 3		5	LB.	d. WEIGHTOF COMPACTED SOIL (b-c)		4.4	2	LB.
J. WEIGHT OF SAND TO FILLHOLE (H-I)						LB.	e. VOLUME OF MOLD	0	33	3	CF
K. DENSITY OF SAND		8	8.	1		CCF	f. WET DENSITY (d/e)	1	3	7	
L. VOLUME OF Hole $\left(\frac{J}{K}\right)$						CF	g. MOISTURECONTENT				\%
M. WETDENSITY $=\left(\frac{A}{L}\right)$						PCF	FAMILY OF CURVES IDENTIFICATION		\&		
N. DRY DENSITY $=\left(\frac{M}{100+E}\right) \times 100$						PCF	Q. OPTIMUM MOISTURE				\%
COMPACTION $=\left(\frac{N}{R}\right) \times 100$ OR $\left(\frac{N}{T}\right) \times 100$							R. MAXIMUM DRY DENSITY				
COMPACTION SPECIFICATION		1	0	0		\%					
PROCTOR DENSITY											
PROCTOR NUMBER											
PROCTOR METHOD (A, C, D, OR 1)				A	A						
O. SPECIFIC GRAVITY OF RETAINED \#4		, 6	5	5	1						
P. ABSORPTION OF RETAINED \#4			. 8	7							
Q. OPTIMUM MOISTURE			1.	1.6			$d \div e \quad 4.42 \div .0333$				
R. MAXIMUM DRY DENSITY	1	2	2.	2.7			unded to one decimal p		132		27327
CORRECTION FOR RETAINED \#4 (METHOD A OR O	Poin	NT On	ONLY				2.7				
S. CORRECTED OPTIMUM MOISTURE						\%					
T. CORRECTED MAXIMUM DRY DENSITY							100				

ARIZONA DEPARTMENT OF TRANSPORTATION SAND CONE DENSITY (ARIZ 230)

FROM THEHOLE		9.0 7			
B. WET WEIGHT OF MATERIAL RETAINED ONTHE \#4 SIEVE		3.6		3	
C. WET WEIISH Of MATERIAL PASSING THE \#4 SIEVE (A-B)					
D. MOISTUREOF THE MATERIAL PASSIIG THE \#4 SIEVE		10			
E. MOIST. CORRECTED For Materill retalned on the \# s sive					
F. WEIGHT OF SAND \& APPARATUS BEFORE FILING HOLE	1	5.		9	
G. WEIGHT OF SAND \& APPARATUS AFTER FILING HOLE		6.		8	
H. WEIGHT OFSAND TO FILL HOLE AND CONE (F.G)		.			
1. WEIGHTOF SAND TO FIL Cone and base plate		3.3			
J. WEIGHT OF SAND TO FLLHOLE (H-H)					
K. DENSTIT OF SAND		88	8.		
L. VoLUMEOF HOLE $\left(\frac{J}{K}\right)$					
M. WETDENSITY $=\left(\frac{A}{L}\right)$					
N. DRY DENSITY $=\left(\frac{\mathrm{M}}{100+E}\right) \times 100$					
COMPACTION $=\left(\frac{N}{R}\right) \times 100$ OR $\left(\frac{N}{T}\right) \times 100$					
COMPACTION SPECIFICATION		10			

a. RETAINED ON \#4 $=\left(\frac{B}{A}\right) \times 100$			

IF RET. ON \#4 IS MORE THAN 50\% (60\% IF AB), GO NO FURTHER. FOR METHOD A OR ONE POINT ONLY
$E=\frac{[D(100-a)]+a}{100}$
ONE POINT PROCTOR (ARIZ 232)

b. WEIGHT OF MOLD \& SOIL	1	3	8	9	LB.
c. WEIGHT OF MOLD		9	4	7	LB.
d. WEIGHTOF COMPACTED SOIL (b-c)		4	4	2	LB.
e. VOLUME OF MOLD	0	3	3	3	CF
f. WET DENSITY (d/e)	1	3	2	7	PCF
g. MOISTURE CONTENT			9	9	$\%$
FAMILY OF CURVES IDENTIFICATION			$\&$		
Q. OPTIMUM MOISTURE					$\%$
R. MAXIMUM DRY DENSITY					PCF

PROCTOR DENSITY

$\mathrm{S}=\frac{.11}{100}$
$\mathrm{T}=\frac{[R(100-a)]+[(56.2)(a)(0)]}{100}$

TYPICAL MOISTURE-DENSITY CURVES
132.7

Curre	Max Dry Wt. lbscu.f.	Optimum Moisure
A	141.8	6.6
B	139.1	7.2
C	136.3	7.9
D	134.1	8.5
E	132.1	9.0
F	129.3	9.7
G	126.6	10.5
H	124.2	11.2
I	121.7	11.9
J	119.3	12.7
K	117.0	13.5
L	114.6	14.6
M	112.0	15.8
N	109.6	16.9
O	107.1	18.1
P	104.7	19.2
Q	102.4	20.3
R	99.9	21.5
S	97.4	22.7
T	94.6	24.4
U	92.1	25.8
V	000	171

A	141.8	6.6	F	129.3	9.7	K	117.0	13.5	P	104.7	19.2	U	92.1	25.8
10\%	141.5	6.7	10\%	129.0	9.8	10\%	116.8	13.6	10\%	104.5	19.3	10\%	91.9	26.0
20\%	141.3	6.7	20\%	128.8	9.9	20\%	116.5	13.7	20\%	104.2	19.4	20\%	91.7	26.1
30\%	141.0	6.8	30\%	128.5	9.9	30\%	116.3	13.8	30\%	104.0	19.5	30\%	91.4	26.3
40\%	140.7	6.8	40\%	128.2	10.0	40\%	116.0	13.9	40\%	103.8	19.6	40\%	91.2	26.4
50\%	140.5	6.9	50\%	128.0	10.1	50\%	115.8	14.1	50\%	103.6	19.8	50\%	91.0	26.6
60\%	140.2	7.0	60\%	127.7	10.2	60\%	115.6	14.2	60\%	103.3	19.9	60\%	90.8	26.8
70\%	139.9	7.0	70\%	127.4	10.3	70\%	115.3	14.3	70\%	103.1	20.0	70\%	90.6	26.9
80\%	139.6	7.1	80\%	127.1	10.3	80\%	115.1	14.4	80\%	102.9	20.1	80\%	90.3	27.1
90\%	139.4	7.1	90\%	126.9	10.4	90\%	114.8	14.5	90\%	102.6	20.2	90\%	90.1	27.2
B	139.1	7.2	G	126.6	10.5	L	114.6	14.6	Q	102.4	20.3	V	89.9	27.4
10\%	138.8	7.3	10\%	126.4	10.6	10\%	114.3	14.7	10\%	102.2	20.4	10\%	89.7	27.6
20\%	138.5	7.3	20\%	126.1	10.6	20\%	114.1	14.8	20\%	101.9	20.5	20\%	89.4	27.8
30\%	138.3	7.4	30\%	125.9	10.7	30\%	113.8	15.0	30\%	101.7	20.7	30\%	89.2	28.0
40\%	138.0	7.5	40\%	125.6	10.8	40\%	113.6	15.1	40\%	101.4	20.8	40\%	88.9	28.2
50\%	137.7	7.6	50\%	125.4	10.9	50\%	113.3	15.2	50\%	101.2	20.9	50\%	88.7	28.5
60\%	137.4	7.6	60\%	125.2	10.9	60\%	113.0	15.3	60\%	100.9	21.0	60\%	88.5	28.7
70\%	137.1	7.7	70\%	124.9	11.0	70\%	112.8	15.4	70\%	100.7	21.1	70\%	88.2	28.9
80\%	136.9	7.8	80\%	124.7	11.1	80\%	112.5	15.6	80\%	100.4	21.3	80\%	88.0	29.1
90°			90\%	124.4	11.1	90\%	112.3	15.7	90\%	100.2	21.4	90\%	87.7	29.3
C			H	124.2	11.2	M	112.0	15.8	R	99.9	21.5	W	87.5	29.5
10\%	136.1	8.0	10\%	124.0	11.3	10\%	111.8	15.9	10\%	99.7	21.6	10\%	87.3	29.6
20\%	135.9	8.0	20\%	123.7	11.3	20\%	115	10 n	nnor	$\bigcirc 01$	D1	nnor	87	万
30\%	135.6	8.1	30\%	123.5	11.4	30\%	The point fell between Curves H \& I							
40\%	135.4	8.1	40\%	123.2	11.5	40\%								
50\%			50\%	123.0	11.6	50\%	The estimated percentage away from the top curve (H) is 50%.							
60\%	135.0	8.3	60\%	22.		60\%								
70\%	134.8	8.3	70\%	122.5	11.7	70\%								
80\%	134.5	8.4	80\%	122.2	11.8	80\%	This gives a Maximum Dry Density of 123.0 and a Optimum Moisture of 11.6							
90\%	134.3	8.4	90\%	122.0	11.8	90\%								
D				121.7	11.9	N								
10\%	33.9	8.6	10\%	121.5	12.0	10\%	Report these results on the Sand Cone Density form							
20\%	133.7	8.6	20\%	121.2	12.1	20\%								
30\%	133.5	8.7	30\%	121.0	12.1	30\%								
40\%	133.3	8.7	40\%	120.7	12.2	40\%								
50\%	133.1	8.8	50\%	120.5	12.3	50\%								
60\%	132.8	8.8	60\%	120.3	12.4	60\%								
70\%	132.6	8.9	70\%	120.0	12.5	70\%								
80\%	132.4	8.9	80\%	119.8	12.5	80\%								
90\%	132.2	9.0	90\%	119.5	12.6	90\%	107.4	18.0	90\%	94.9	24.2	90\%	83.2	31.4
E	132.0	9.0	J	119.3	12.7	0	107.1	18.1	T	94.6	24.4	Y	83.0	31.5
10\%	131.7	9.1	10\%	119.1	12.8	10\%	106.9	18.2	10\%	94.4	24.5	10\%	82.8	31.6
20\%	131.5	9.1	20\%	118.8	12.9	20\%	106.6	18.3	20\%	94.1	24.7	20\%	82.6	31.7
30\%	131.2	9.2	30\%	118.6	12.9	30\%	106.4	18.4	30\%	93.9	24.8	30\%	82.4	31.8
40\%	130.9	9.3	40\%	118.4	13.0	40\%	106.1	18.5	40\%	93.6	25.0	40\%	82.2	31.9
50\%	130.7	9.4	50\%	118.2	13.1	50\%	105.9	18.7	50\%	93.4	25.1	50\%	82.1	32.0
60\%	130.4	9.4	60\%	117.9	13.2	60\%	105.7	18.8	60\%	93.1	25.2	60\%	81.9	32.1
70\%	130.1	9.5	70\%	117.7	13.3	70\%	105.4	18.9	70\%	92.9	25.4	70\%	81.7	32.2
80\%	129.8	9.6	80\%	117.5	13.3	80\%	105.2	19.0	80\%	92.6	25.5	80\%	81.5	32.3
90\%	129.6	9.6	90\%	117.2	13.4	90\%	104.9	19.1	90\%	92.4	25.7	90\%	81.3	32.4
F	129.3	9.7	K	117.0	13.5	P	104.7	19.2	U	92.1	25.8	Z	81.1	32.5

ARIZONA DEPARTMENT OF TRANSPORTATION SAND CONE DENSITY (ARIZ 230)

A. TOTAL WET WEIGHT OF MATERIAL FROM THE HOLE		9.0		7	LB.
B. WET WEIGHT OF MATERIAL RETAINED ON THE \#4 SIEVE		3	6	3	LB.
C. WET WEIGHT OF MATERIAL PASSING THE \#4 SIEVE (A-B)					LB.
D. MOISTURE OF THE MATERIAL PASSING THE \#4 SIEVE		1	0	3	\%
E. MOIST. CORRECTED FOR MATERIAL RETAINED ON THE \#4 SIEVE					\%
F. WEIGHT OF SAND \& APPARATUS BEFORE FILLING HOLE	1	5. 6		9	LB.
G. WEIGHT OF SAND \& APPARATUS AFTER FILLING HOLE		6. 4		8	LB.
H. WEIGHT OF SAND TO FILL HOLE AND CONE (F-G)		-			LB.
I. WEIGHT OF SAND TO FILL CONE AND BASE PLATE		3.3		5	LB.
J. WEIGHT OF SAND TO FILLHOLE (H-I)					LB.
K. DENSITY OF SAND		8	8	1	PCF
L. VOLUME OF HOLE $\left(\frac{J}{K}\right)$					CF
M. WET DENSITY $=\left(\frac{A}{L}\right)$					PCF
N. DRY DENSITY $=\left(\frac{M}{100+E}\right) \times 100$					PCF
COMPACTION $=\left(\frac{N}{R}\right) \times 100$ OR $\left(\frac{N}{T}\right) \times 100$					\%
COMPACTION SPECIFICATION		1	0	0	\%

PROCTOR DENSITY

PROCTOR NUMBER					
PROCTOR METHOD (A,C, D, OR 1)	2	6	5	1	
O. SPECIFIC GRAVITY OF RETAINED \#4		0	8	7	$\%$
P. ABSORPTION OF RETAINED \#4		1	1	6	$\%$
Q. OPTIMUM MOISTURE	1	2	2.	7	PCF
R. MAXIMUM DRY DENSITY					

CORRECTION FOR RETAINED \#4 (METHOD A OR ONE-POINT ONLY)

S. CORRECTED OPTIMUM MOISTURE					$\%$
T. CORRECTED MAXIMUM DRY DENSITY				PCF	

IF RET. ON \#4 IS MORE THAN 50\% (60\% IF AB), GO NO FURTHER. FOR METHOD A OR ONE POINT ONLY
$E=\frac{[D(100-a)]+a}{100}$
ONE POINT PROCTOR (ARIZ 232)

b. WEIGHT OF MOLD \& SOIL	1	3	8	9	LB.
c. WEIGHT OF MOLD		9	4	7	LB.
d. WEIGHT OF COMPACTED SOIL (b-c)		4.4	2	LB.	
e. VOLUME OF MOLD	0	3	3	3	CF
f. WET DENSITY (d/e)	1	3	2	7	PCF
g. MOISTURE CONTENT			9	9	$\%$
FAMILY OF CURVES IDENTIFICATION		H	$\&$	1	50%
Q. OPTIMUM MOISTURE		1	1	6	$\%$
R. MAXIMUM DRY DENSITY	1	2	3.	0	PCF

TEST OPERATORAND DATE

RESIDENT ENGINEER, PROJECT SUPERVISOR, OR LABMAN AND DATE

FOR METHOD A OR ONE POINT ONLY

$$
\begin{aligned}
& \mathrm{S}=\frac{[Q(100-a)]+a}{100} \\
& \mathrm{~T}=\frac{[R(100-a)]+[(56.2)(a)(0)]}{100}
\end{aligned}
$$

ARIZONA DEPARTMENT OF TRANSPORTATION SAND CONE DENSITY (ARIZ 230)

A. TOTAL WET WEIGHT OF MATERIAL FROM THE HOLE					7		
B. WET WEIGHT OF MATERIAL RETAINED ON THE \#4 SIEVE					3		
C. WET WEIGHT OF MATERIAL PASSING THE \#4 SIEVE (A-B)							
D. MOISTURE OF THE MATERIAL PASSING THE \#4 SIEVE		1			3		
E. MOIST. CORRECTED FOR MATERIAL RETAINED ON THE \#4 SIEVE							\%
F. WEIGHT OF SAND \& APPARATUS BEFORE FILLING HOLE	1				9		
G. WEIGHT OF SAND \& APPARATUS AFTER FILLING HOLE			6.		8		
H. WEIGHT OF SAND TO FILL HOLE AND CONE (F-G)			.				
I. WEIGHT OF SAND TO FILL CONE ANDBASE PLATE			3		5		
J. WEIGHT OF SAND TO FILLHOLE (H-I)							
K. DENSITY OF SAND		8	8	8	1		
L. VOLUME OF HOLE $\left(\frac{J}{K}\right)$							
M. WETDENSITY $=\left(\frac{A}{L}\right)$							
$\text { N. DRY DENSITY }=\left(\frac{M}{100+E}\right) \times 100$							
$\text { COMPACTION }=\left(\frac{N}{R}\right) \times 100 \text { OR }\left(\frac{N}{T}\right) \times 100$							\%
COMPACTION SPECIFICATION		1			0		\%

A one point proctor is run to verify the Lab Proctor data.
If the Maximum Dry Density from the one point proctor is within 1.0 pcf of the Lab Proctor Maximum Dry Density then the Lab Proctor data is still valid. Any further calculations on this form requiring The Optimum Moisture and Maximum Dry Density will use the Lab Proctor Data.
(if on the Exam, you are not within 1.0 pcf of the Lab Maximum Dry Density, then carefully re-plot the family of curves.)

ARIZONA DEPARTMENT OF TRANSPORTATION SAND CONE DENSITY (ARIZ 230)

A. TOTAL WET WEIGHT OF MATERIAL FROM THE HOLE		9	0	7	LB.
B. WET WEIGHT OF MATERIAL RETAINED ON THE \#4 SIEVE		3	6	3	LB.
C. WET WEIGHT OF MATERIAL PASSING THE \#4 SIEVE (A-B)					LB.
D. MOISTURE OF THE MATERIAL PASSING THE \#4 SIEVE		1	0	3	\%
E. MOIST. CORRECTED FOR MATERIAL RETAINED ON THE \#4 SIEVE					\%
F. WEIGHT OF SAND \& APPARATUS BEFORE FILLING HOLE	1	5	6	9	LB.
G. WEIGHT OF SAND \& APPARATUS AFTER FILLING HOLE				8	LB.
H. WEIGHT OF SAND TO FILL HOLE AND CONE (F-G)					LB.
I. WEIGHT OF SAND TO FILL CONE AND BASE PLATE		3	3	5	LB.
J. WEIGHT OF SAND TO FILLHOLE (H-I)					LB.
K. DENSITY OF SAND		8	8	1	PCF
L. VOLUME OF HOLE $\left(\frac{J}{K}\right)$					CF
M. WET DENSITY $=\quad\left(\frac{A}{L}\right)$					PCF
N. DRY DENSITY $=\left(\frac{M}{100+E}\right) \times 100$					PCF
COMPACTION $=\left(\frac{N}{R}\right) \times 100$ OR $\left(\frac{N}{T}\right) \times 100$					\%
COMPACTION SPECIFICATION		1	0	0	\%

PROCTOR DENSITY

PROCTOR NUMBER					
PROCTOR METHOD (A, C, D, OR 1)	2.	6	5	1	
O. SPECIFIC GRAVITY OF RETAINED \#4		0	8	7	$\%$
P. ABSORPTION OF RETAINED \#4		1	1.	6	$\%$
Q. OPTIMUM MOISTURE	1	2	2.	7	PCF
R. MAXIMUM DRY DENSITY					

CORRECTION FOR RETAINED \#4 (METHOD A OR ONE-POINT ONLY)

S. CORRECTED OPTIMUM MOISTURE					$\%$
T. CORRECTED MAXIMUM DRY DENSITY				PCF	

IF RET. ON \#4 IS MORE THAN 50\% (60\% IF AB), GONO FURTHER. FOR METHOD A OR ONE POINT ONLY
$E=\frac{[D(100-a)]+a}{100}$
ONE POINT PROCTOR (ARIZ 232)

b. WEIGHT OF MOLD \& SOIL	1	3	8	9	LB.
c. WEIGHT OF MOLD		9	4	7	LB.
d. WEIGHTOF COMPACTED SOIL (b-c)		4.4	2	LB.	
e. VOLUME OF MOLD	0	3	3	3	CF
f. WET DENSITY (d/e)	1	3	2	7	PCF
g. MOISTURE CONTENT			9.	9	$\%$
FAMILY OF CURVES IDENTIFICATION		H	$\&$	1	50%
Q. OPTIMUM MOISTURE		1	1	6	$\%$
R. MAXIMUM DRY DENSITY	1	2	3.	0	PCF

TEST OPERATORAND DATE

RESIDENT ENGINEER, PROJECT SUPERVISOR, OR LABMAN AND DATE

FOR METHOD A OR ONE POINT ONLY

$$
\begin{aligned}
& \mathrm{S}=\frac{[Q(100-a)]+a}{100} \\
& \mathrm{~T}=\frac{[R(100-a)]+[(56.2)(a)(0)]}{100}
\end{aligned}
$$

ARIZONA DEPARTMENT OF TRANSPORTATION SAND CONE DENSITY (ARIZ 230)

PROCTOR DENSITY

$C=A-B$
$C=9.07-3.63$
$C=5.44$

IF RET. ON \#4 IS MORE THAN 50% (60% IF AB), GONO FURTHER. FOR METHOD A OR ONE POINT ONLY
$E=\frac{[D(100-a)]+a}{100}$
ONE POINT PROCTOR (ARIZ 232)

TEST OPERATORAND DATE
$\overline{R E S I D E N T}$ ENGINEER, PROJECT SUPERVISOR, OR LABMAN AND DATE

FOR METHOD A OR ONE POINT ONLY

$$
\begin{aligned}
& \mathrm{S}=\frac{[Q(100-a)]+a}{100} \\
& \mathrm{~T}=\frac{[R(100-a)]+[(56.2)(a)(0)]}{100}
\end{aligned}
$$

PROCTOR NUMBER					
PROCTOR METHOD (A, C, D, OR 1)	2.	6	5	1	
O. SPECIFIC GRAVITY OF RETAINED \#4		0	8	7	$\%$
P. ABSORPTION OF RETAINED \#4		1	1.	6	$\%$
Q. OPTIMUM MOISTURE	1	2	2.	7	PCF
R. MAXIMUM DRY DENSITY					

CORRECTION FOR RETAINED \#4 (METHOD A OR ONE-POINT ONLY)

S. CORRECTED OPTIMUM MOISTURE					$\%$
T. CORRECTED MAXIMUM DRY DENSITY				PCF	

ARIZONA DEPARTMENT OF TRANSPORTATION SAND CONE DENSITY (ARIZ 230)

> USE CAPITAL LETTERS
> SAMPLED FROM
> PROJECT ENGINEER /

A. TOTAL WET WEIGHT OF MATERIAL FROM THEHOLE		9.0 07				
B. WET WEIGHT OF MATERIAL RETAINED ON THE \#4 SIEVE			. 6		3	B.
C. WET WEIGHT OF MATERIAL PASSING THE \#4 SIEVE (A-B)			5.4		4	
D. MOISTURE OF THE MATERIAL PASSING THE \#4 SIEVE		1	0		3	\%
E. MOIST. CORRECTED FOR MATERIAL RETAINED ON THE \#4 SIEVE						\%
F. WEIGHT OF SAND \& APPARATUS BEFORE FILLING HOLE	1				9	
G. WEIGHT OF SAND \& APPARATUS AFTER FILLING HOLE					8	
H. WEIGHT OFSAND TO FILL HOLE AND CONE (F-G)			*			
I. WEIGHT OF SAND TO FILL CONE ANDBASE PLATE			. 3		5	
J. WEIGHT OF SAND TO FILLHOLE (H-I)			.			
K. DENSITY OF SAND		8	8			
L. VOLUME OF HoLe $\left(\frac{J}{K}\right)$						
M. WETDENSITY $=\left(\frac{A}{L}\right)$						
$\begin{aligned} & \text { N. DRYDENSITY }=\left(\frac{M}{100+E}\right) \times 100 \\ & \text { COMPACTION }=\left(\frac{N}{R}\right) \times 100 \text { OR }\left(\frac{N}{T}\right) \times 100 \\ & \hline \end{aligned}$						
COMPACTION SPECIIICATION		1	0		0	\%

PROCTOR DENSITY

CORRECTION FOR RETAINED \#4 (METHOD A OR ONE-POINT ONLY)

S. CORRECTED OPTIMUM MOISTURE				$\%$
T. CORRECTED MAXIMUM DRY DENSITY				PCF

IF RET. ON \#4 IS MORE THAN 50% (60% IF AB), GO NO FURTHER. FOR METHOD A OR ONE POINT ONLY
$E=\frac{[D(100-a)]+a}{100}$
ONE POINT PROCTOR (ARIZ 232)

TEST OPERATORAND DATE

RESIDENT ENGINEER, PROJECT SUPERVISOR, OR LABMAN AND DATE

FOR METHOD A OR ONE POINT ONLY

$$
\begin{aligned}
& \mathrm{S}=\frac{[Q(100-a)]+a}{100} \\
& \mathrm{~T}=\frac{[R(100-a)]+[(56.2)(a)(0)]}{100}
\end{aligned}
$$

ARIZONA DEPARTMENT OF TRANSPORTATION SAND CONE DENSITY (ARIZ 230)

A. TOTAL WET WEIGHT OF MATERIAL FROM THE HOLE		9	0	7	
B. WET WEIGHT OF MATERIAL RETAINED ON THE \#4 SIEVE		3	6	3	LB.
C. WET WEIGHT OF MATERIALPASSING THE \#4 SIEVE (A-B)		5.		4	LB.
D. MOISTURE OF THE MATERIAL PASSING THE \#4 SIEVE		1	0	3	\%
E. MOIST. CORRECTED FOR MATERIAL RETAINED ON THE \#4 SIEVE			6	6	\%
F. WEIGHT OF SAND \& APPARATUS BEFORE FILLING HOLE	1	5	6	9	LB.
G. WEIGHT OF SAND \& APPARATUS AFTER FILLING HOLE		6	4	8	LB.
H. WEIGHT OF SAND TO FILL HOLE AND CONE (F-G)					LB.
I. WEIGHT OF SAND TO FILL CONE AND BASE PLATE		3	3	5	LB.
J. WEIGHT OF SAND TO FILLHOLE (H-I)					LB.
K. DENSITY OF SAND		8	8.	1	PCF
L. VOLUME OF HOLE $\left(\frac{J}{K}\right)$					CF
M. WET DENSITY $=\quad\left(\frac{A}{L}\right)$					PCF
N. DRY DENSITY $=\left(\frac{M}{100+E}\right) \times 100$					PCF
COMPACTION $=\left(\frac{N}{R}\right) \times 100$ OR $\left(\frac{N}{T}\right) \times 100$					\%
COMPACTION SPECIFICATION		1	0	0	\%

PROCTOR DENSITY

PROCTOR NUMBER					
PROCTOR METHOD (A,C, D, OR 1)	2	6	5	1	
O. SPECIFIC GRAVITY OF RETAINED \#4		0	8	7	$\%$
P. ABSORPTION OF RETAINED \#4		1	1	6	$\%$
Q. OPTIMUM MOISTURE	1	2	2.	7	PCF
R. MAXIMUM DRY DENSITY					

CORRECTION FOR RETAINED \#4 (METHOD A OR ONE-POINT ONLY)

S. CORRECTED OPTIMUM MOISTURE					$\%$
T. CORRECTED MAXIMUM DRY DENSITY				PCF	

IF RET. ON \#4 IS MORE THAN 50\% (60% IF AB), GONO FORTHER.

ONE POINT PROCTOR (ARIZ 232)

TEST OPERATORAND DATE

RESIDENT ENGINEER, PROJECT SUPERVISOR, OR LABMAN AND DATE

FOR METHOD A OR ONE POINT ONLY

$$
\begin{aligned}
& \mathrm{S}=\frac{[Q(100-a)]+a}{100} \\
& \mathrm{~T}=\frac{[R(100-a)]+[(56.2)(a)(0)]}{100}
\end{aligned}
$$

ARIZONA DEPARTMENT OF TRANSPORTATION SAND CONE DENSITY (ARIZ 230)

A. TOTAL WET WEIGHT OF MATERIAL FROM THE HOLE	9	0	7	LB.
B. WET WEIGHT OF MATERIAL RETAINED ON THE \#4 SIEVE	3	6	3	LB.
C. WET WEIGHT OF MATERIAL PASSING THE \#4 SIEVE (A-B)	5	4	4	LB.
D. MOISTURE OF THE MATERIAL PASSING THE \#4 SIEVE	1	0	3	\%
E. MOIST. CORRECTED FOR MATERIAL RETAINED ON THE \#4 SIEVE		6.	6	\%
F. WEIGHT OF SAND \& APPARATUS BEFORE FILLING HOLEG. WEIGHT OF SAND \& APPARATUS AFTER FILLING HOLE	5	6	9	LB.
			8	LB.
H. WEIGHT OF SAND TO FILL HOLE AND CONE (F-G)	9	2	1	LB.
I. WEIGHT OF SAND TO FILL CONE AND BASE PLATE	3	3	5	LB.
J. WEIGHT OF SAND TO FILLHOLE (H-I)				LB.
K. DENSITY OF SAND	8	8.	1	PCF
L. VOLUME OF HOLE $\left(\frac{J}{K}\right)$				CF
M. WET DENSITY $=\quad\left(\frac{A}{L}\right)$				PCF
N. DRY DENSITY $=\left(\frac{M}{100+E}\right) \times 100$				PCF
COMPACTION $=\left(\frac{N}{R}\right) \times 100$ OR $\left(\frac{N}{T}\right) \times 100$				\%
COMPACTION SPECIFICATION	1	0	0	\%

PROCTOR DENSITY

PROCTOR NUMBER					
PROCTOR METHOD (A,C, D, OR 1)	2	6	5	1	
O. SPECIFIC GRAVITY OF RETAINED \#4		0	8	7	$\%$
P. ABSORPTION OF RETAINED \#4		1	1	6	$\%$
Q. OPTIMUM MOISTURE	1	2	2.	7	PCF
R. MAXIMUM DRY DENSITY					

CORRECTION FOR RETAINED \#4 (METHOD A OR ONE-POINT ONLY)

S. CORRECTED OPTIMUM MOISTURE					$\%$
T. CORRECTED MAXIMUM DRY DENSITY				PCF	

a. RETAINED ON \#4 $=\left(\frac{B}{A}\right) \times 100$		4	0	$\%$

IF RET. ON \#4 IS MORE THAN 50\% (60\% IF AB), GO NO FURTHER.

10.3
$F=$
$\left[\begin{array}{llr}{[D} & (100 & -a)\end{array} \begin{array}{r}40 \\ \hline\end{array}\right.$

$\mathrm{H}=\mathrm{F}-\mathrm{G}$
$H=15.69-6.48$
$H=9.21$

e. VOLUME OF MOLD
f. WET DENSITY (d/e)
g. MOISTURE CONTENT

FAMILY OF CURVES IDENTIFICATION \quad H 8 \&

Q. OPTIMUM MOISTURE	1	1.	6	$\%$	
R. MAXIMUM DRY DENSITY	1	2	3.	0	PCF

TEST OPERATORAND DATE

RESIDENT ENGINEER, PROJECT SUPERVISOR, OR LABMAN AND DATE

FOR METHOD A OR ONE POINT ONLY

$$
\begin{aligned}
& \mathrm{S}=\frac{[Q(100-a)]+a}{100} \\
& \mathrm{~T}=\frac{[R(100-a)]+[(56.2)(a)(0)]}{100}
\end{aligned}
$$

ARIZONA DEPARTMENT OF TRANSPORTATION SAND CONE DENSITY (ARIZ 230)

A. TOTAL WET WEIGHT OF MATERIAL FROM THE HOLE	9	0	7	LB.
B. WET WEIGHT OF MATERIAL RETAINED ON THE \#4 SIEVE	3	6	3	LB.
C. WET WEIGHT OF MATERIAL PASSING THE \#4 SIEVE (A-B)	5.	4	4	LB.
D. MOISTURE OF THE MATERIAL PASSING THE \#4 SIEVE	1	0	3	\%
E. MOIST. CORRECTED FOR MATERIAL RETAINED ON THE \#4 SIEVE		6.	6	\%
F. WEIGHT OF SAND \& APPARATUS BEFORE FILLING HOLE	5	6	9	LB.
G. WEIGHT OF SAND \& APPARATUS AFTER FILLING HOLE	6	4	8	LB.
H. WEIGHT OF SAND TO FILL HOLE AND CONE (F-G)	9		1	IB
I. WEIGHT OF SAND TO FILL CONE ANDBASE PLATE	3	3	5	LB.
J. WEIGHT OF SAND TO FILLHOLE (H-I)		8	6	LB.
K. DENSITY OF SAND	8	8	1	PCF
L. VOLUME OF HOLE $\left(\frac{J}{K}\right)$				CF
M. WET DENSITY $=\quad\left(\frac{A}{L}\right)$				PCF
N. DRY DENSITY $=\left(\frac{M}{100+E}\right) \times 100$				PCF
COMPACTION $=\left(\frac{N}{R}\right) \times 100$ OR $\left(\frac{N}{T}\right) \times 100$				\%
COMPACTION SPECIFICATION	1	0	0	\%

PROCTOR DENSITY

PROCTOR NUMBER					
PROCTOR METHOD (A,C, D, OR 1)	2	6	5	1	
O. SPECIFIC GRAVITY OF RETAINED \#4		0	8	7	$\%$
P. ABSORPTION OF RETAINED \#4		1	1	6	$\%$
Q. OPTIMUM MOISTURE	1	2	2.	7	PCF
R. MAXIMUM DRY DENSITY					

CORRECTION FOR RETAINED \#4 (METHOD A OR ONE-POINT ONLY)

S. CORRECTED OPTIMUM MOISTURE					$\%$
T. CORRECTED MAXIMUM DRY DENSITY				PCF	

a. RETAINED ON \#4 $=\left(\frac{B}{A}\right) \times 100 \quad 1400 \%$

IF RET. ON \#4 IS MORE THAN 50\% (60\% IF AB), GO NO FURTHER.

$$
\begin{aligned}
& 10.3 \quad 4040 \\
& E=\frac{[D(100-a)]+a}{100}
\end{aligned}
$$

ONE POINT PROCTOR (ARIZ 232)

b. WEIGHT OF MOLD \& SOIL	1	3	8	9	LB.
$\rightarrow \begin{aligned} & J=H-1 \\ & J=9.21-3.35 \\ & J=5.86 \end{aligned}$		9	4	7	LB.
		4	4	2	LB.
	0	3	3	3	CF
	1	3	2	. 7	PCF
			9	9	\%
FAMILY OF CURVES IDENTIFICATION		H	\&	1	
Q. OPTIMUM MOISTURE		1	1	6	\%
R. MAXIMUM DRY DENSITY	1	2	3	. 0	PCF

TEST OPERATORAND DATE

RESIDENT ENGINEER, PROJECT SUPERVISOR, OR LABMAN AND DATE

FOR METHOD A OR ONE POINT ONLY

$$
\begin{aligned}
& \mathrm{S}=\frac{[Q(100-a)]+a}{100} \\
& \mathrm{~T}=\frac{[R(100-a)]+[(56.2)(a)(0)]}{100}
\end{aligned}
$$

ARIZONA DEPARTMENT OF TRANSPORTATION SAND CONE DENSITY (ARIZ 230)

PROCTOR DENSITY

PROCTOR NUMBER					
PROCTOR METHOD (A,C, D, OR 1)	2	6	5	1	
O. SPECIFIC GRAVITY OF RETAINED \#4		0	8	7	$\%$
P. ABSORPTION OF RETAINED \#4		1	1	6	$\%$
Q. OPTIMUM MOISTURE	1	2	2.	7	PCF
R. MAXIMUM DRY DENSITY					

CORRECTION FOR RETAINED \#4 (METHOD A OR ONE-POINT ONLY)

S. CORRECTED OPTIMUM MOISTURE				$\%$	
T. CORRECTED MAXIMUM DRY DENSITY					PCF

a. RETAINED ON\#4 $=\left(\frac{B}{A}\right) \times 100 \quad 1400 \%$

IF RET. ON \#4 IS MORE THAN 50% (60% IF AB), GO NO FURTHER.

$$
\begin{gathered}
\begin{array}{c}
10.3 \\
\hline
\end{array}{ }^{40} \begin{array}{r}
40 \\
{[D(100-a)]+a}
\end{array} \\
100
\end{gathered}
$$

ONE POINT PROCTOR (ARIZ 232)

TEST OPERATORAND DATE
$\overline{\text { RESIDENT ENGINEER, PROJECT SUPERVISOR, OR LABMAN AND DATE }}$

FOR METHOD A OR ONE POINT ONLY

$$
\begin{aligned}
& \mathrm{S}=\frac{[Q(100-a)]+a}{100} \\
& \mathrm{~T}=\frac{[R(100-a)]+[(56.2)(a)(0)]}{100}
\end{aligned}
$$

ARIZONA DEPARTMENT OF TRANSPORTATION SAND CONE DENSITY (ARIZ 230)

A. TOTAL WET WEIGHT OF MATERIAL FROM THE HOLE		9		7		LB.
B. WET WEIGHT OF MATERIAL RETAINED ON THE \#4 SIEVE		3.		3		LB.
C. WET WEIGHT OF MATERIAL PASSING THE \#4 SIEVE (A-B)				4		LB.
D. MOISTURE OF THE MATERIAL PASSING THE \#4 SIEVE		1	0	3		\%
E. MOIST. CORRECTED FOR MATERIAL RETAINED ON THE \#4 SIEVE			6			\%
F. WEIGHT OF SAND \& APPARATUS BEFORE FILLING HOLE	1			9		LB.
G. WEIGHT OF SAND \& APPARATUS AFTER FILLING HOLE			. 4	8		LB.
H. WEIGHT OF SAND TO FILL HOLE AND CONE (F-G)				1		LB.
I. WEIGHT OF SAND TO FILL CONE ANDBASE PLATE				5		LB.
J. WEIGHT OF SAND TO FILLHOLE (H-I)				6		
K. DENSITY OF SAND		8	8			PCF
L. VOLUME OF Hole $\quad\left(\frac{J}{K}\right)$, 0	6	6	5		CF
M. WETDENSITY $=\left(\frac{A}{L}\right)$	1	3	6	4		PCF
N. DRY DENSITY $=\left(\frac{\mathrm{M}}{100+E}\right) \times 100$						PCF
COMPACTION $=\left(\frac{N}{R}\right) \times 100$ OR $\left(\frac{N}{T}\right) \times 100$						\%
COMPACTION SPECIFICATION		1	0	0		\%

PROCTOR DENSITY

PROCTOR NUMBER					
PROCTOR METHOD (A, C, D, OR 1)	2	6	5	1	
O. SPECIFIC GRAVITY OF RETAINED \#4		0	8	7	$\%$
P. ABSORPTION OF RETAINED \#4		1	1.	6	$\%$
Q. OPTIMUM MOISTURE	1	2	2.7	PCF	
R. MAXIMUM DRY DENSITY					

CORRECTION FOR RETAINED \#4 (METHOD A OR ONE-POINT ONLY)

S. CORRECTED OPTIMUM MOISTURE				\%
T. CORRECTED MAXIMUM DRY DENSITY				

a. RETAINED ON\#4 $=\left(\frac{B}{A}\right) \times 100 \quad 1400 \%$

IF RET. ON \#4 IS MORE THAN 50% (60% IF AB), GO NO FURTHER.

$$
\begin{aligned}
& 10.3 \quad 4040 \\
& E=\frac{[D(100-a)]+a}{100}
\end{aligned}
$$

ONE POINT PROCTOR (ARIZ 232)

b. WEIGHTOF MOLD \& SOIL	3.819	LB.
c. WEIGHT OF MOLD	9.47	LB.
d. WEIGHTOF COMPACTED SOIL (b-c)	4.42	LB.
$\begin{aligned} & M=A \div L \\ & M=9.07 \div .0665 \\ & M=136.3909774 \end{aligned}$ Rounded to 1 decimal place $=136.4$	3 3 2 7 9 9 $\&$ 1 1 1 3 6 3 0	

TEST OPERATORAND DATE
$\overline{\text { RESIDENT ENGINEER, PROJECT SUPERVISOR, OR LABMAN AND DATE }}$

FOR METHOD A OR ONE POINT ONLY

$$
\begin{aligned}
& \mathrm{S}=\frac{[Q(100-a)]+a}{100} \\
& \mathrm{~T}=\frac{[R(100-a)]+[(56.2)(a)(0)]}{100}
\end{aligned}
$$

ARIZONA DEPARTMENT OF TRANSPORTATION SAND CONE DENSITY (ARIZ 230)

A. TOTAL WET WEIGHT OF MATERIAL FROM THE HOLE	9	0	7	LB.
B. WET WEIGHT OF MATERIAL RETAINED ON THE \#4 SIEVE	3	6	3	LB.
C. WET WEIGHT OF MATERIAL PASSING THE \#4 SIEVE (A-B)	5.	4	4	LB.
D. MOISTURE OF THE MATERIAL PASSING THE \#4 SIEVE	1	0	3	\%
E. MOIST. CORRECTED FOR MATERIAL RETAINED ON THE \#4 SIEVE		6.	6	\%
F. WEIGHT OF SAND \& APPARATUS BEFORE FILLING HOLE	5	6	9	LB.
G. WEIGHT OF SAND \& APPARATUS AFTER FILLING HOLE	6	4	8	LB.
H. WEIGHT OF SAND TO FILL HOLE AND CONE (F-G)	9.	2	1	LB.
I. WEIGHT OF SAND TO FILL CONE AND BASE PLATE	3	3	5	LB.
J. WEIGHT OF SAND TO FILLHOLE (H-I)		8	6	LB.
K. DENSITY OF SAND	8	8	1	PCF
L. VOLUME OF HOLE $\left(\frac{J}{K}\right)$	6	6	5	CF
M. WETDENSITY $=\left(\frac{A}{1}\right)$	3	6	4	PC
N. DRY DENSITY $=\left(\frac{M}{100+E}\right) \times 100$	2	8	0	PCF
COMPACTION $=\left(\frac{N}{R}\right) \times 100$ OR $\left(\frac{N}{T}\right) \times 100$				\%
COMPACTION SPECIFICATION	1	0	0	\%

PROCTOR DENSITY

PROCTOR NUMBER					
PROCTOR METHOD (A, C, D, OR 1)	2	6	5	1	
O. SPECIFIC GRAVITY OF RETAINED \#4		0	8	7	$\%$
P. ABSORPTION OF RETAINED \#4		1	1.	6	$\%$
Q. OPTIMUM MOISTURE	1	2	2.7	PCF	
R. MAXIMUM DRY DENSITY					

CORRECTION FOR RETAINED \#4 (METHOD A OR ONE-POINT ONLY)

S. CORRECTED OPTIMUM MOISTURE				
T. CORRECTED MAXIMUM DRY DENSITY				$\%$

a. RETAINED ON \#4 $=\left(\frac{B}{A}\right) \times 100 \quad 140 \%$

IF RET. ON \#4 IS MORE THAN 50\% (60\% IF AB), GO NO FURTHER.

$$
\begin{gathered}
\left.\begin{array}{c}
10.3 \\
{[D}
\end{array}\right) 40 \\
\left.E=\frac{40}{[D}(100-a)\right]+a
\end{gathered}
$$

ONE POINT PROCTOR (ARIZ 232)

$N=127.9549719$
Rounded to 1 decimal place $=128.0$

FOR METHOD A OR ONE POINT ONLY

$$
\begin{aligned}
& \mathrm{S}=\frac{[Q(100-a)]+a}{100} \\
& \mathrm{~T}=\frac{[R(100-a)]+[(56.2)(a)(0)]}{100}
\end{aligned}
$$

ARIZONA DEPARTMENT OF TRANSPORTATION SAND CONE DENSITY (ARIZ 230)

A. TOTAL WET WEIGHT OF MATERIAL FROM THEHOLE			LB.
B. WET WEIGHT OF MATERIAL RETAINED ON THE \#4 SIEVE	3.6	3	B.
C. WET WEIGHT OF MATERIALPASSING THE \#4 SIEVE (A-B)	5. 4	4	-
D. MOISTURE OF THE MATERIAL PASSING THE \#4 SIEVE E. MOIST. CORRECTED FOR MATERIAL RETAINED ON THE \#4 SIEVE	10	3	\%
		6	\%
F. WEIGHT OF SAND \& APPARATUS BEFORE FILLING HOLE ${ }^{\text {a }}$ (1	5.	9	B.
G. WEIGHT OF SAND \& APPARATUS AFTER FILLING HOLE	6. 4	8	B.
H. WEIGHT OF SAND TO FILL HOLE AND CONE (F-G)	9.2		
I. WEIGHTOF SAND TO FILL CONE AND BASE PLATE	3.3	5	LB.
J. WEIGHT OF SAND TO FILLHOLE (H-I)	5.8	6	B.
K. DENSITY OF SAND	88.	1	
L. Volume of hole $\left(\frac{J}{K}\right)$	66	5	CF
M. WETDENSITY $=\left(\frac{A}{L}\right)$	36	4	
		0	
COMPACTION SPECIIICATION	10	0	\%

 IF RET. ON \#4 IS MORE THAN 50\% (60\% IF AB), GO NO FURTHER.

$$
\mathrm{E}=\frac{\begin{array}{c}
10.3 \\
{[D(100-a)]+a}
\end{array}}{100}
$$

For calculating the \% compaction there are
two formulas. $(\mathrm{N} \div \mathrm{R}) \times 100$ or $(\mathrm{N} \div \mathrm{T}) \times 100$. The only time $(\mathrm{N} \div \mathrm{R}) \times 100$ is used, is when there is less than 10% retained on the \#4 sieve. This sample has 40% retained so we have to use $(\mathrm{N} \div \mathrm{T}) \times 100$. We have to calculate T and we also have to calculate S.

PROCTOR DENSITY

PROCTOR NUMBER			
PROCTOR METHOD (A, C, D, OR 1)			
O. SPECIFIC GRAVITY OF RETAINED \#4			
P. ABSORPTION OF RETAINED \#4			
Q. OPTIMUM MOISTURE			
R. MAXIMUM DRY DENSTY	12	2. 7	PCF
CORRECTION FORRETAINED \#4 (METHOD A OR ONE-POINT ONLY)			
S. CORREOTED OPTIMUM MOISTURE		¢	\%
T. CORRECTED MAXIMUM DRY DENSITY		-	PCF

RESIDENT ENGINEER, PROJECT SUPERVISOR, OR LABMAN AND DATE

FOR METHOD A OR ONE POINT ONLY

$$
\begin{aligned}
& \mathrm{S}=\frac{[Q(100-a)]+a}{100} \\
& \mathrm{~T}=\frac{[R(100-a)]+[(56.2)(a)(0)]}{100}
\end{aligned}
$$

ARIZONA DEPARTMENT OF TRANSPORTATION SAND CONE DENSITY (ARIZ 230)

PROJECT ENGINEER /

REMARKS
\square

A. TOTAL WET WEIGHT OF MATERIAL FROM THEHOLE					7	LB.
B. WET WEIGHT OF material retained on the \#4 SIEVE					3	LB.
C. WET WEIGHT OF MATERIAL PASSING THE \#4 SIEVE (A-B)			5. 4		4	LB.
D. MOISTURE OF THE MATERIAL PASSING THE \#4 SIEVE		1	10		3	\%
E. MOIST. CORRECTED FOR MATERIAL RETAINED ON THE \#4 SIEVE						\%
F. WEIGHT OF SAND \& APPARATUS BEFORE FILLING HOLE	1				9	LB.
G. WEIGHT OF SAND \& APPARATUS AFTER FLLLING HOLE			6. 4		8	LB.
H. WEIGHT OF SAND TO FILL HOLE AND CONE (F-G)			9. 2		1	LB.
I. WEIGHT OF SAND TO FILL CONE AND BASE PLATE			3.3		5	-
J. WEIGHT OF SAND TO FILLHOLE (H-I)			5.8		6	LB.
K. DENSITY OF SAND			88			${ }_{C}$
L. VOLUME OF HOLE $\left(\frac{J}{K}\right)$	0		66		5	CF
M. WETDENSITY $=\left(\frac{A}{L}\right)$	1	3	36			
N DRYDENSITY $=\left(\frac{M}{(0)}\right)^{(1000}$			28		0	
COMPACTION $=\left(\frac{N}{N}\right) \times 100$ OR $\left(\frac{N}{T}\right) \times 100$						\%
COMPACTION SPECIFICATION		1	10	0	0	\%

PROCTOR DENSITY

PROCTOR NUMBER					

CORRECTION FOR RETAINED \#4 (METHOD A OR ONE-POINT ONLY)

S. CORRECTED OPTIMUM MOISTURE
T. CORRECTED MAXIMUM DRY DENSITY
a. RETAINED ON \#4 $=\left(\frac{B}{A}\right) \times 100$ IF RET. ON \#4 IS MORE THAN 50% (60% IF AB), GONO FURTHER.

$$
E=\frac{\begin{array}{c}
10.3 \\
{[D} \\
(100-a)]+a
\end{array}}{100}
$$

ONE POINT PROCTOR (ARIZ 232)

b. WEIGHTOF MOLD \& SOIL	1	3.	8	9	LB
c. WEIGHT OF MOLD		9.	4	7	LB
d. WEIGHTOF COMPACTED SOIL (b-c)		4.	4	2	LB
e. VOLUME OF MOLD	0	3	3	3	CF
f. WET DENSITY (d/e)	1	3	2.7	PCF	

The formulas for calculating S and T are to the right. Fill in the information Make sure to use the Lab proctor information.

RESIDENT ENGINEER, PROJECT SUPERVISOR, OR LABMAN AND DATE

FOR METHOD A OR ONE PONTI DNLY

$\rightarrow \underset{122.7}{\substack{100}}$

ARIZONA DEPARTMENT OF TRANSPORTATION SAND CONE DENSITY (ARIZ 230)

PROJECT ENGINEER /

REMARKS
\square

A. TOTAL WET WEIGHT OF MATERIAL FROM THEHOLE			9. 0		7	LB.
B. WET WEIGHT OF MATERIAL RETAINED ON THE \#4 SIEVE			3.6		3	LB.
C. WET WEIGHT OF MATERIALPASSING THE \#4 SIEVE (A-B)			5. 4			LB.
D. MOISTURE OF THE MATERIAL PASSING THE \#4 SIEVE			10	0	3	\%
E. MOIST. CORRECTED FOR MATERIAL RETAINED ON THE \#4 SIEVE				6.		\%
F. WEIGHT OF SAND \& APPARATUS BEFORE FILLING HOLE	1		5. 6		9	B.
G. WEIGHT OF SAND \& APPARATUS AFTER FILLING HOLE			6. 4		8	B.
H. WEIGHT OF SAND TO FILL HOLE AND CONE (F-G)			9. 2		1	LB.
I. WEIGHT OF SAND TO FILL CONE ANDBASE PLATE			3.3		5	LB.
J. WEIGHT OF SAND TO FILLHOLE (H-I)			5.8		6	B.
K. DENSITY OF SAND			88	8		
L. VOLUME OF HOLE $\left(\frac{J}{K}\right)$. 0		66		5	CF
M. WETDENSITY $=\left(\frac{A}{L}\right)$	1		36			
N. DRYDENSITY $=\left(\frac{1}{(0)}\right.$			28			
COMPACTION $=\left(\frac{N}{N}\right) \times 100$ OR $\left(\frac{N}{T}\right) \times 100$						\%
COMPACTION SPECIFICATION			10	0	0	\%

PROCTOR DENSITY

PROCTOR NUMBER PROCTOR METHOD (A, C, D, OR 1)				A				
O. SPECIFIC GRAVITY OFRETAINED \#4		6	5					
P. ABSORPTION OF RETAINED \#4			8		7			
Q. OPTIMUM MOISTURE		1	1					
R. MAXIMUM DRY DENSITY	1	2						

CORRECTION FOR RETAINED \#4 (METHOD A OR ONE-POINT ONLY)
S. CORRECTED OPTIMUM MOISTURE
T. CORRECTED MAXIMUM DRY DENSITY

IF RET. ON \#4 IS MORE THAN 50\% (60% IF AB), GONO FURTHER.

$$
E=\frac{\begin{array}{c}
10.3 \\
{[D} \\
(100-a)]+a
\end{array}}{100}
$$

ONE POINT PROCTOR (ARIZ 232)

b. WEIGHTOF MOLD \& SOIL	1	3.	8	9	Lb.
c. WEIGHT OF MOLD		9.	4	7	Lb.
d. WEIGHTOF COMPACTED SOIL (b-c)		4.	4	2	Lb.
e. VOLUME OF MOLD	0	3	3	3	CF
f. WET DENSITY (d/e)	1	3	2.7	PCF	

Calculate S . Work inside the () first then the [].
$S=100-40=60$

$$
60 \times 11.6=696
$$

$$
696+40=736
$$

$736 \div 100=7.36$
Rounded to 1 decimal place $=7.4$

FOR METHOD A OR ONE POINT ONLY

ARIZONA DEPARTMENT OF TRANSPORTATION SAND CONE DENSITY (ARIZ 230)

PROJECT ENGINEER /
ORIGINAL SOURCE

TESTNO.

SAMPLED BY

IF MILEPOST, INPUT DECIMAL

REMARKS
\square

A. TOTAL WET WEIGHT OF MATERIAL FROM THEHOLE			9. 0		7	LB.
B. WET WEIGHT OF MATERIAL RETAINED ON THE \#4 SIEVE			3. 6		3	LB.
C. WET WEIGHT OF MATERIALPASSING THE \#4 SIEVE (A-B)			5. 4		4	LB.
D. MOISTURE OF THE MATERIAL PASSING THE \#4 SIEVE E. MOIST. CORRECTED FOR MATERIAL RETAINED ON THE \#4 SIEVE			0		3	\%
						\%
F. WEIGHT OF SAND \& APPARATUS BEFORE FILLING HOLE	1				9	B.
G. WEIGHT OF SAND \& APPARATUS AFTER FILLING HOLE			6. 4		8	
H. WEIGHT OF SAND TO FILL HOLE AND CONE (F-G)			9. 2		1	LB.
I. WEIGHTOF SAND TO FILL CONE AND BASE PLATE			. 3		5	LB.
J. WEIGHT OF SAND TO FILLHOLE (H-I)			5.8		6	B.
K. DENSITY OF SAND		8	8			
L. VOLUME OF HOLE $\left(\frac{J}{K}\right)$	- 0		66		5	CF
M. WETDENSITY $=\left(\frac{A}{L}\right)$	1		6			
N DRYDENSITY $=\left(\frac{\text { c }}{(0) \times 100}\right.$			8			
COMPACTION $=\left(\frac{N}{N}\right) \times 100$ OR $\left(\frac{N}{T}\right) \times 100$						\%
COMPACTION SPECIFICATION		1	0		0	\%

PROCTOR DENSITY

CORRECTION FOR RETAINED \#4 (METHOD A OR ONE-POINT ONLY)
S. CORRECTED OPTIMUM MOISTURE
T. CORRECTED MAXIMUM DRY DENSITY
a. RETAINED ON \#4 $=\left(\frac{B}{A}\right) \times 100$

IF RET. ON \#4 IS MORE THAN 50% (60% IF AB), GO NO FURTHER.

$$
E=\frac{\begin{array}{c}
10.3 \\
{[D} \\
(100-a)]+a
\end{array}}{100}
$$

ONE POINT PROCTOR (ARIZ 232)

b. WEIGHTOF MOLD \& SOIL	1	3,	8	9	Lb.

Calculate T. Work inside the () first then the []. Work each side of the + sign separately then add then together.
$\mathrm{T}=100-40=60$
$60 \times 122.7=7362$
work the other side of the + sign
$56.2 \times 40 \times 2.651=5959.448$
Add together
$7362+5959.448=13321.448$
$13321.448 \div 100=133.21448$
Rounded to 1 decimal place $=133.2$
$11.6 \quad 40 \quad 40$
$[Q(100-a)]+a$
$\begin{array}{ll}122.7 & 40\end{array} \quad 40 \quad 2.651$
$T=\frac{[R(100-a)]+[(56.2)(a)(0)]}{100}$
100

ARIZONA DEPARTMENT OF TRANSPORTATION SAND CONE DENSITY (ARIZ 230)

A. TOTAL WET WEIGHT OF MATERIAL FROM THEHOLE			9. 0			B.
B. WET WEIGHT OF MATERIAL RETAINED ON THE \#4 SIEVE			3. 6		3	LB.
C. WET WEIGHT OF MATERIALPASSING THE \#4 SIEVE (A-B)			5. 4		4	LB.
D. MOISTURE OF THE MATERIAL PASSINGTHE \#4 SIEVE				0		\%
E. MOIST. CORRECTED FOR MATERIAL RETAINED ON THE \#4 SIEVE				6.	6	\%
F. WEIGHT OF SAND \& APPARATUS BEFORE FILLING HOLE	1		5. 6		9	B.
G. WEIGHT OF SAND \& APPARATUS AFTER FILLING HOLE			6. 4		8	B.
H. WEIGHT OF SAND TO FILL HOLE AND CONE (F-G)			9. 2		1	B.
I. WEIGHTOF SAND TO FILL CONE ANDBASE PLATE			. 3		5	B.
J. WEIGHT OF SAND TO FILLHOLE (H -I)			5.8		6	
K. DENSITY OF SAND			88	8		CF
L. VOLUME OF HoLe $\quad\left(\frac{J}{K}\right)$	0		66	6	5	CF
M. WETDENSITY $=\left(\frac{A}{L}\right)$	1		36	6		
	1		8	8		
COMPACTION $=\left(\frac{N}{R}\right) \times 100$ OR $\quad\left(\frac{N}{T}\right) \times 100$				9	6	\%
COMPACTION SPECIFICATION		1		0	0	\%

PROCTOR DENSITY

PROCTOR NUMBER PROCTOR METHOD (A, C, D, OR 1)				A		
O. SPECIFIC GRAVITY OF RETAINED \#4		6	5		1	
P. ABSORPTION OF RETAINED \#4			8	7		
Q. OPTIMUM MOISTURE		1		6		
R. MAXIMUM DRY DENSITY	1	2		. 7		

CORRECTION FOR RETAINED \#4 (METHOD A OR ONE-POINT ONLY)

S. CORRECTED OPTIMUM MOISTURE		7	4	$\%$	
T. CORRECTED MAXIMUM DRY DENSITY	1	3	3	2	PCF

a. RETAINED ON\#4 $=\left(\frac{B}{A}\right) \times 100$

IF RET. ON \#4 IS MORE THAN 50% (60% IF AB), GONO FURTHER.

$$
E=\frac{\begin{array}{c}
10.3 \\
{[D} \\
(100-a)]+a
\end{array}}{100}
$$

ONE POINT PROCTOR (ARIZ 232)

| b. WEIGHTOF MOLD \& SOIL | 1 | 3,8 | 9 | LB. |
| :--- | :--- | :--- | :--- | :--- | :--- |

Now we can calculate the
\% Compaction using ($\mathrm{N} \div \mathrm{T}$) x 100
$\%$ compaction $=128.0 \div 133.2$
$=.960960961$
$.960960961 \times 100=96.0960961$
Rounded to the whole number
$=96$

TEST OPERATORAND DATE

$\overline{\text { RESIDENT ENGINEER, PROJECT SUPERVISOR, OR LABMAN AND DATE }}$

ARIZONA DEPARTMENT OF TRANSPORTATION SAND CONE DENSITY (ARIZ 230)

TAL WET WEIGHT OF MATERIAL FROM THEHOLE		9.0	0		
B. WET WEIGHT OF MATERIAL RETAINED ONTHE \#4 SIEVE		3.6	6		
ING THE \#4 SIEVE			4		
D. MOISTURE OF THE MATERIAL PASSING THE \#4 SIEVE		10			
TERIAL Retalined onthe \#'			6.6		
F. WEIGHT OF SAND \& APPARATUS BEFORE FILIING HoLE			6		
G. WEIGHT OF SAND \& APPARATUS AFTER FILING HOLE			4		
H. WEIGHT OF SAND TO FILL HOLE AND CONE (F-G)			2		
1. WEIGHTOF SAND TO FILL CONE AND BASE PLAT		3.3			
J. WEIGHT OF SAND TO FLLHOLE (H-1)			8		
Enstr of SAND			8		
L. VOLUME OF HOLE $\left(\frac{J}{K}\right)$. 0		6		
M. WETDENSTITY $=\left(\frac{A}{L}\right)$	1		6		
N. DRY DENSITY $=\left(\frac{\mathrm{M}}{100+E}\right) \times 100$	1				
COMPACTION $=\left(\frac{N}{R}\right) \times 100$ OR $\left(\frac{N}{T}\right) \times 100$					
COMPACTION SPECIFICATION		1			

PROCTOR DENSITY

PROCTOR NUMBER				A	
PROCTOR METHOD ($\mathrm{A}, \mathrm{C}, \mathrm{D}, \mathrm{OR} 1$)					
O. SPECIFIC GRAVITY OFRETAINED \#4			5		
P. ABSORPTION OF RETAINED \#4			8		
Q. OPTIMUM MOISTURE		1			
R. MAXIMUM DRY DENSITY	1	2			

CORRECTION FOR RETAINED \#4 (METHOD A OR ONE-POINT ONLY)

S. CORRECTED OPTIMUM MOISTURE		7	4	$\%$	
T. CORRECTED MAXIMUM DRY DENSITY	1	3	3	2	PCF

a. RETANED ON $\# 4=\left(\frac{B}{A}\right) \times 100 \quad|\mathbf{4}| \mathbf{0} \%$

IF RET. ON \#4 IS MORE THAN 50% (60% IF AB), GO NO FURTHER.

$$
\begin{gathered}
\begin{array}{c}
10.3 \\
E
\end{array} \mathbf{4 0}^{40} 40 \\
{\left[\begin{array}{l}
[100-a)]+a
\end{array}\right.} \\
100
\end{gathered}
$$

ONE POINT PROCTOR (ARIZ 232)

TEST OPERATORAND DATE

RESIDENT ENGINEER, PROJECT SUPERVISOR, OR LABMAN AND DATE

$$
\begin{aligned}
& \text { FOR METHOD A OR ONE POINT ONLY } \\
& \mathrm{S}=\frac{\begin{array}{c}
11.6 \\
{[Q(100-a)]+a}
\end{array}}{\begin{array}{l}
100 \\
122.7 \\
40
\end{array}} \\
& \mathrm{~T}=\frac{\left[\begin{array}{ll}
{[R(100-a)]+[(56.2)(a)(O)]}
\end{array}\right.}{100}
\end{aligned}
$$

Blank Forms

\qquad
Mold I. D. \#: 4-1
Temperature of Water used for Calibration: $82^{\circ} \mathrm{F}$
Unit Weight of Water: \qquad lb. / cu. Ft.

\qquad Four Inch Mold \qquad Six Inch Mold

Mold I. D. \#: \qquad
Temperature of Water used for Calibration 78 Unit Weight of Water: \qquad lb. / cu. Ft.

Weight of Baseplate, Empty Mold, and Glass Plate (grams)	Weight of Baseplate, Mold Filled With Water, and Glass Plate (grams)	Weight of Water to fill Mold (grams)
7064.5	9180.8	
$\begin{aligned} & {\left[\begin{array}{c} \text { Volume of } \\ \text { Mold } \\ \text { (cu. ft.) } \end{array}\right.} \\ & =\frac{(}{(} \end{aligned}$	$=\frac{\text { Weight of Water }}{\left[\begin{array}{c} \text { Unit Weight } \\ \text { of Water } \\ \text { (lb. / cu. ft.) } \end{array}\right] \times}$ $\frac{)}{) \times(453.6)}=$	Mold (grams) (grams / lb.)] \qquad $\mathrm{cu} . \mathrm{Ft}$.
Remarks:		
Calibration Date:		
Test Operator:		
Supervisor and Date:		
Calibration Expiration Date:		

Date of Calibration: \qquad Test Operator: \qquad
I. D. No. of Mold used in calibration: 11

Volume of Mold used in calibration: \qquad
Identification of Sand: \qquad
Identification of Sand Cone Apparatus: \qquad

Trial No.	Wt. of Baseplate And Empty Mold (grams)	Wt. of Baseplate and Mold Filled with Sand (grams)	Wt. of Sand to Fill Mold (grams)
1	6631	9629	
2	6631	9627	
3	6631	9630	

Average Weight of Sand to Fill Mold = \qquad grams

Density of Sand, $\mathbf{D}_{\mathbf{S}}=\frac{\text { Average Weight of Sand to Fill Mold }}{(453.6 \text { grams } / \mathrm{lb} .) \times(\text { Volume of Mold })}$

$$
=\frac{(453.6) \times(\quad)}{\left(\quad \mathrm{lb} . \mathrm{ft} \mathrm{f}^{3} .\right.}
$$

Trial No.	Initial Wt. of Apparatus (grams)	Final Wt. of Apparatus (grams)	Wt. of Sand to Fill Funnel and Baseplate (grams)
1	6029	4508	
2	6031	4512	
3	6027	4508	

Average Weight of Sand to Fill Funnel and Baseplate $=$ \qquad grams

Volume of Funnel and Baseplate, $\mathbf{V}_{\mathbf{f b}}=\frac{\text { Average Weight of Sand to Fill Funnel and Baseplate }}{(453.6 \text { grams } / \mathrm{lb} .) \times(\text { Density ofSand })}$

$$
=\frac{(453.6) \times(}{}
$$ $\mathbf{I}=\mathbf{D}_{\mathbf{s}} \times \mathbf{V}_{\mathrm{fb}}$ \qquad

Remarks: \qquad

Supervisor and Date:
Calibration Expiration Date:

ARIZONA DEPARTMENT OF TRANSPORTATION SAND CONE DENSITY (ARIZ 230)

A. TOTAL WET WEIGHT OF MATERIAL FROM THE HOLE		9.0		7	LB.
B. WET WEIGHT OF MATERIAL RETAINED ON THE \#4 SIEVE		3	6	3	LB.
C. WET WEIGHT OF MATERIAL PASSING THE \#4 SIEVE (A-B)					LB.
D. MOISTURE OF THE MATERIAL PASSING THE \#4 SIEVE		1	0	3	\%
E. MOIST. CORRECTED FOR MATERIAL RETAINED ON THE \#4 SIEVE					\%
F. WEIGHT OF SAND \& APPARATUS BEFORE FILLING HOLE	1	5. 6		9	LB.
G. WEIGHT OF SAND \& APPARATUS AFTER FILLING HOLE		6.4		8	LB.
H. WEIGHT OF SAND TO FILL HOLE AND CONE (F-G)					LB.
I. WEIGHT OF SAND TO FILL CONE AND BASE PLATE					LB.
J. WEIGHT OF SAND TO FILLHOLE (H-I)					LB.
K. DENSITY OF SAND					PCF
L. VOLUME OF HOLE $\left(\frac{J}{K}\right)$					CF
M. WET DENSITY $=\left(\frac{A}{L}\right)$					PCF
N. DRY DENSITY $=\left(\frac{M}{100+E}\right) \times 100$					PCF
COMPACTION $=\left(\frac{N}{R}\right) \times 100$ OR $\left(\frac{N}{T}\right) \times 100$					\%
COMPACTION SPECIFICATION		1	0	0	\%

PROCTOR DENSITY

PROCTOR NUMBER					
PROCTOR METHOD (A,C, D, OR 1)	2	6	5	1	
O. SPECIFIC GRAVITY OF RETAINED \#4		0	8	7	$\%$
P. ABSORPTION OF RETAINED \#4		1	1	6	$\%$
Q. OPTIMUM MOISTURE	1	2	2.	7	PCF
R. MAXIMUM DRY DENSITY					

CORRECTION FOR RETAINED \#4 (METHOD A OR ONE-POINT ONLY)

S. CORRECTED OPTIMUM MOISTURE					$\%$
T. CORRECTED MAXIMUM DRY DENSITY				PCF	

IF RET. ON \#4 IS MORE THAN 50\% (60\% IF AB), GO NO FURTHER.
FOR METHOD A OR ONE POINT ONLY
$E=\frac{[D(100-a)]+a}{100}$
ONE POINT PROCTOR (ARIZ 232)

b. WEIGHT OF MOLD \& SOIL	1	3	8	9	LB.
c. WEIGHT OF MOLD		9	$\mathbf{4}$	7	LB.
d. WEIGHT OF COMPACTED SOIL (b-c)					LB.
e. VOLUME OF MOLD					CF
f. WET DENSITY (d/e)					PCF
g. MOISTURE CONTENT		9	$\mathbf{9}$	$\%$	
FAMILY OF CURVES IDENTIFICATION		$\&$			
Q. OPTIMUM MOISTURE					$\%$
R. MAXIMUM DRY DENSITY				PCF	

TEST OPERATORAND DATE

RESIDENT ENGINEER, PROJECT SUPERVISOR, OR LABMAN AND DATE

FOR METHOD A OR ONE POINT ONLY

$$
\begin{aligned}
& \mathrm{S}=\frac{[Q(100-a)]+a}{100} \\
& \mathrm{~T}=\frac{[R(100-a)]+[(56.2)(a)(0)]}{100}
\end{aligned}
$$

TYPICAL MOISTURE-DENSTYY CURVES
 110
108
106
104
102
100
98
96

| Curre | $\begin{array}{c}\text { Max Dry } \\ \\ \\ \text { Wt. }\end{array}$ | $\begin{array}{c}\text { Optimum } \\ \text { Mosure }\end{array}$ |
| :---: | :---: | :---: | losculut.

A	141.8	6.6
B	139.1	7.2
C	136.3	7.9
D	134.1	8.5
E	132.1	9.0
F	129.3	9.7
G	126.6	10.5
H	124.2	11.2
I	121.7	11.9
J	119.3	12.7
K	17	

K	117.0	13.5
L	114.6	14.6
M	112.0	15.8
N	109.6	16.9

0	107.1	18.1
P	104.7	19.2
Q	102.4	20.3
R	99.9	21.5
S	97.4	22.7
T	94.6	24.4
U	92.1	25.8
V	89.9	27.4
W	87.5	29.5
X	85.0	30.5
Y	83.0	31.5
Z	81.1	32.5

A	141.8	6.6	F	129.3	9.7	K	117.0	13.5	P	104.7	19.2	U	92.1	25.8
10\%	141.5	6.7	10\%	129.0	9.8	10\%	116.8	13.6	10\%	104.5	19.3	10\%	91.9	26.0
20\%	141.3	6.7	20\%	128.8	9.9	20\%	116.5	13.7	20\%	104.2	19.4	20\%	91.7	26.1
30\%	141.0	6.8	30\%	128.5	9.9	30\%	116.3	13.8	30\%	104.0	19.5	30\%	91.4	26.3
40\%	140.7	6.8	40\%	128.2	10.0	40\%	116.0	13.9	40\%	103.8	19.6	40\%	91.2	26.4
50\%	140.5	6.9	50\%	128.0	10.1	50\%	115.8	14.1	50\%	103.6	19.8	50\%	91.0	26.6
60\%	140.2	7.0	60\%	127.7	10.2	60\%	115.6	14.2	60\%	103.3	19.9	60\%	90.8	26.8
70\%	139.9	7.0	70\%	127.4	10.3	70\%	115.3	14.3	70\%	103.1	20.0	70\%	90.6	26.9
80\%	139.6	7.	80\%	127.1	10.3	80\%	115.1	14.4	80\%	102.9	20.1	80\%	90.3	27.1
90\%	139.4	7.	90\%	126.9	10.4	90\%	114.8	14.5	90\%	102.6	20.2	90\%	90.1	27.2
B	139.1	7.2	G	126.6	10.5	L	114.6	14.6	Q	102.4	20.3	V	89.9	27.4
10\%	138.8	7.3	10\%	126.4	10.6	10\%	114.3	14.7	10\%	102.2	20.4	10\%	89.7	27.6
20\%	138.5	7.3	20\%	126.1	10.6	20\%	114.1	14.8	20\%	101.9	20.5	20\%	89.4	27.8
30\%	138.3	7.4	30\%	125.9	10.7	30\%	113.8	15.0	30\%	101.7	20.7	30\%	89.2	28.0
40\%	138.0	7.5	40\%	125.6	10.8	40\%	113.6	15.1	40\%	101.4	20.8	40\%	88.9	28.2
50\%	137.7	7.6	50\%	125.4	10.9	50\%	113.3	15.2	50\%	101.2	20.9	50\%	88.7	28.5
60\%	137.4	7.6	60\%	125.2	10.9	60\%	113.0	15.3	60\%	100.9	21.0	60\%	88.5	28.7
70\%	137.1	7.7	70\%	124.9	11.0	70\%	112.8	15.4	70\%	100.7	21.1	70\%	88.2	28.9
80\%	136.9	7.8	80\%	124.7	11.1	80\%	112.5	15.6	80\%	100.4	21.3	80\%	88.0	29.1
90\%	136.6	7.8	90\%	124.4	11.1	90\%	112.3	15.7	90\%	100.2	21.4	90\%	87.7	29.3
C	136.3	7.9	H	124.2	11.2	M	112.0	15.8	R	99.9	21.5	W	87.5	29.5
10\%	136.1	8.0	10\%	124.0	11.3	10\%	111.8	15.9	10\%	99.7	21.6	10\%	87.3	29.6
20\%	135.9	8.0	20\%	123.7	11.3	20\%	111.5	16.0	20\%	99.4	21.7	20\%	87.0	29.7
30\%	135.6	8.1	30\%	123.5	11.4	30\%	111.3	16.1	30\%	99.2	21.9	30\%	86.8	29.8
40\%	135.4	8.1	40\%	123.2	11.5	40\%	111.0	16.2	40\%	98.9	22.0	40\%	86.5	29.9
50\%	135.2	8.2	50\%	123.0	11.6	50\%	110.8	16.4	50\%	98.7	22.1	50\%	86.3	30.0
60\%	135.0	8.3	60\%	122.7	11.6	60\%	110.6	16.5	60\%	98.4	22.2	60\%	86.0	30.1
70\%	134.8	8.3	70\%	122.5	11.7	70\%	110.3	16.6	70\%	98.2	22.3	70\%	85.8	30.2
80\%	134.5	8.4	80\%	122.2	11.8	80\%	110.1	16.7	80\%	97.9	22.5	80\%	85.5	30.3
90\%	134.3	8.4	90\%	122.0	11.8	90\%	109.8	16.8	90\%	97.7	22.6	90\%	85.3	30.4
D	134.1	8.5	1	121.7	11.9	N	109.6	16.9	5	97.4	22.7	X	85.0	30.5
10\%	133.9	8.6	10\%	121.5	12.0	10\%	109.4	17.0	10\%	97.1	22.9	10\%	84.8	30.6
20\%	133.7	8.6	20\%	121.2	12.1	20\%	109.1	17.1	20\%	96.8	23.0	20\%	84.6	30.7
30\%	133.5	8.7	30\%	121.0	12.1	30\%	108.9	17.3	30\%	96.6	23.2	30\%	84.4	30.8
40\%	133.3	8.7	40\%	120.7	12.2	40\%	108.6	17.4	40\%	96.3	23.4	40\%	84.2	30.9
50\%	133.1	8.8	50\%	120.5	12.3	50\%	108.4	17.5	50\%	96.0	23.6	50\%	84.0	31.0
60\%	132.8	8.8	60\%	120.3	12.4	60\%	108.1	17.6	60\%	95.7	23.7	60\%	83.8	31.1
70\%	132.6	8.9	70\%	120.0	12.5	70\%	107.9	17.7	70\%	95.4	23.9	70\%	83.6	31.2
80\%	132.4	8.9	80\%	119.8	12.5	80\%	107.6	17.9	80\%	95.2	24.1	80\%	83.4	31.3
90\%	132.2	9.0	90\%	119.5	12.6	90\%	107.4	18.0	90\%	94.9	24.2	90\%	83.2	31.4
E	132.0	9.0	J	119.3	12.7	0	107.1	18.1	T	94.6	24.4	Y	83.0	31.5
10\%	131.7	9.1	10\%	119.1	12.8	10\%	106.9	18.2	10\%	94.4	24.5	10\%	82.8	31.6
20\%	131.5	9.1	20\%	118.8	12.9	20\%	106.6	18.3	20\%	94.1	24.7	20\%	82.6	31.7
30\%	131.2	9.2	30\%	118.6	12.9	30\%	106.4	18.4	30\%	93.9	24.8	30\%	82.4	31.8
40\%	130.9	9.3	40\%	118.4	13.0	40\%	106.1	18.5	40\%	93.6	25.0	40\%	82.2	31.9
50\%	130.7	9.4	50\%	118.2	13.1	50\%	105.9	18.7	50\%	93.4	25.1	50\%	82.1	32.0
60\%	130.4	9.4	60\%	117.9	13.2	60\%	105.7	18.8	60\%	93.1	25.2	60\%	81.9	32.1
70\%	130.1	9.5	70\%	117.7	13.3	70\%	105.4	18.9	70\%	92.9	25.4	70\%	81.7	32.2
80\%	129.8	9.6	80\%	117.5	13.3	80\%	105.2	19.0	80\%	92.6	25.5	80\%	81.5	32.3
90\%	129.6	9.6	90\%	117.2	13.4	90\%	104.9	19.1	90\%	92.4	25.7	90\%	81.3	32.4
F	129.3	9.7	K	117.0	13.5	P	104.7	19.2	U	92.1	25.8	Z	81.1	32.5

